Project description:All but a few eukaryotes die without oxygen and respond dynamically to changes in the level of oxygen available to them. One ancient oxygen-requiring biochemical pathway in eukaryotes is the pathway for the biosynthesis of sterols, leading to cholesterol in animals and ergosterol in fungi. Mutations in this pathway are a frequent cause of azole drug resistance in pathogenic fungi. The regulatory mechanism for the sterol pathway is also widely conserved between animals and fungi and is centred on a transcription activator, SREBP, that forms part of a sterol-sensing complex. However, in one group of yeasts – the Saccharomycotina, which includes the major pathogen Candida albicans – control of the sterol pathway has been taken over by an unrelated regulatory protein, Upc2. We show here by analysis of the yeast Yarrowia lipolytica that the evolutionary switch from SREBP to Upc2 was a two-step process in which Upc2 appeared in an ancestor of Saccharomycotina, and SREBP subsequently degenerated and lost its sterol-regulatory function while retaining an ancient role in filamentation.
Project description:All but a few eukaryotes die without oxygen and respond dynamically to changes in the level of oxygen available to them. One ancient oxygen-requiring biochemical pathway in eukaryotes is the pathway for the biosynthesis of sterols, leading to cholesterol in animals and ergosterol in fungi. Mutations in this pathway are a frequent cause of azole drug resistance in pathogenic fungi. The regulatory mechanism for the sterol pathway is also widely conserved between animals and fungi and is centred on a transcription activator, SREBP, that forms part of a sterol-sensing complex. However, in one group of yeasts M-bM-^@M-^S the Saccharomycotina, which includes the major pathogen Candida albicans M-bM-^@M-^S control of the sterol pathway has been taken over by an unrelated regulatory protein, Upc2. We show here by analysis of the yeast Yarrowia lipolytica that the evolutionary switch from SREBP to Upc2 was a two-step process in which Upc2 appeared in an ancestor of Saccharomycotina, and SREBP subsequently degenerated and lost its sterol-regulatory function while retaining an ancient role in filamentation. RNA was isolated from Y. lipolytica wildtype (JMY2900) in normoxia (21% oxygen, 4 biological replicates), wildtype (JMY2900) in hypoxia (1% oxygen, 5 biological replicates), upc2 deletion (SMY2) in hypoxia (1% oxygen, 3 biological replicates), and from sre1 (SMY5, SMY8) deletion in hypoxia (1% oxygen, 2 biological replicates). Gene expression was determined using strand-specific RNA-seq.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed