Project description:The effects of cerium oxide nanoparticles on the gene expression of Gram-negative Escherichia coli is tested. 8 cultures of E. coli were treated with either cerium nanoparticles or cerium chloride solution at 50 mgs/ml. 4 cultures were untreated.
Project description:The study evaluates potential protective effects of cerium oxide nanoparticles (nanoceria) against oxidative stress in muscle tissue, both on ground and in space
Project description:To determine how transcriptome is altered by knockdown of NRF2, MLL1, or UTX, we performed RNA-sequencing (RNA-seq) analysis of HaCaT cells and its shRNA-expressing derivatives before and after exposure to hydrogen peroxide (H2O2) or cerium oxide nanoparticles (CeO2 NPs).
Project description:Human Hepatocellular Carcinoma cells (HepG2) were exposed to six nanomaterials containing either Cerium oxide (CeO2) or Titanium oxide (TiO2) nanoparticles. Three different concentrations were tested: 0.3, 3, or 30 μg/mL) for 3 days. Microarray analysis was performed to identify genes differentially expressed following exposure to these chemicals.
Project description:We have employed whole genome microarray expression to distinguish the effect of environmental aging on the toxicity of several cerium oxide nanoparticles (NPs) in human intestinal cells compared . Cells were exposed in vitro, and datasets of differentially expressed genes were identified for each type of NPs versus control samples.
Project description:We used a next-generation sequencing approach to understand the effects of antioxidant cerium oxide nanoparticles (CeO2) on neuronal stem cell differentiation. As a model we used the murine neuronal progenitor cell line, C17.2, which upon differentiation, is able to generate a mixed culture of neurons and neuroglial cells. As additional controls we used N-acetylcysteine (NAC), a conventional antioxidant and samarium doped cerium oxide nanoparticles (Sm-CeO2), as particle controls (as they bear a reduced antioxidant potential as compared to CeO2 alone). We had a time series approach and we investigates effects after 1, 4 and 7 days during differentiation. We revealed that CeO2 reduce axonal guidance signalling, neuronal differentiation and neuroglial differentiation after 7 days, thus having a negative effect on neuronal development. Overall, these effects are likely due to the antioxidant properties of nanoceria, although some evidence for a particle effect was also provided as indicated by the interference with cytoskeletal as well as integrin signaling genes both by nanoceria and Sm-doped nanoceria, but not by NAC.
Project description:The project is focused on the soil bacterium model Bacillus subtilis that is one of the essential components of the rhizosphere. In its natural ecosystem, this bacterium develops in the form of a biofilm, particularly around plant roots. Two types of biofilm that are closer to its natural environment than the usual liquid type culture, have been assayed, pellicle biofilm and swarming. We then used the power of shotgun proteomics and bioinformatics tools to analyze in details these two somehow similar modes of cultures. Several physiological and metabolic patterns including proteins implicated in sporulation have shown significant differences triggered by the growth culture mode. The effect of two types of nanoparticles SiO2 and the widely used nanoceria (cerium oxide nanoparticles) has then been studied in the same way. This allowed us to investigate in details the response of the bacteria to the cerium oxide nanoparticles and especially to focus on the differences observed depending on the biofilm type, including proteins associated with iron homeostasis. This clearly highlighted the importance of eventually testing several growth conditions and pinpointed the power of proteomics helping building mechanistic hypotheses.
Project description:We have employed whole genome microarray expression to distinguish the effect of environmental aging on the toxicity of several cerium oxide nanoparticles (NPs) in human intestinal cells compared . Cells were exposed in vitro, and datasets of differentially expressed genes were identified for each type of NPs versus control samples. NPs induced gene expression in Caco-2 cells was measured at 24 hours after exposure . Six independent experiments were performed using different NPs and controls for each experiment.