Project description:Two new stilbene derivatives, named strebluses C and D, were isolated from the EtOAc-soluble fraction of the stems of Streblus ilicifolius (Moraceae). Its absolute configuration was elucidated based on NMR spectroscopic data interpretation and optical rotation calculation. Streblus C possesses strong tyrosinase inhibitory activity with an IC50 value of 0.01 μM. Docking studies of 1 and 2 with oxy-tyrosinase were carried out to analyze their interactions. The analysis of the docked poses confirmed that 1 showed better binding affinity for oxy-tyrosinase than that of 2.
| S-EPMC8266447 | biostudies-literature
Project description:Endophytic fungi diversity in Acanthus ilicifolius
Project description:Acanthus ilicifolius is an excellent mangrove plant. In this study, the complete chloroplast genome of A. ilicifolius, a salt tolerant plant of Acanthaceae, was generated. The length of chloroplast genome is 150,758 bp, in which the large-single copy region (LSC) is 82,963 bp, the small-single copy (SSC) region is 17,191 bp, and a pair of inverted repeat (IRa and IRb) regions is 25,302 bp. The chloroplast genome contains 128 genes, including 84 protein-coding genes, eight rRNA genes, and 36 tRNAs genes, with a total GC content of 38%. Phylogenetic analysis showed that A. ilicifolius was closely related to A. ebracteatus, both species belonged to Acanthus genus.
Project description:Physio-anatomical modifications and elemental distribution pattern in Acanthus ilicifolius subjected to Zn stress were analysed in this study. Survival of A. ilicifolius plants under a high concentration of ZnSO4 was compensated by the reduction in the photosynthetic efficacy. Micro and macro-elemental distribution pattern in the root tissues was significantly influenced by heavy metal exposure. Tolerance towards the excess toxic metal ions in the tissue of A. ilicifolius was aided by the modified anatomical features. Moreover, the increased deposition of Zn around the central vasculature of the root confirms the complexation of Zn2+ in the xylem vessels. Metal induced molecular level changes of root and leaf samples indicate the presence of OH, NH2, and CH3 deformation as well as C-O-H and C-O-C stretch. A prominent band corresponding to CH3 deformation, pointing hemicellulose fortification, occurs in the cell walls of the xylem, aiding in Zn localization. The phytostabilisation potential of A. ilicifolius is dependent on the coordinated responses which endow with phenotypic plasticity necessary to cope with Zn toxicity.
Project description:Antibiotic resistance has become one of the inevitable barrier in aquaculture disease management. Herbal drugs has evolved to be the novel ways of combating drug resistant pathogens. In the current investigation, leaf extracts of mangrove plant, Acanthus ilicifolius were assessed for in vitro studies, among the selected four extracts, methanol extract has expressed highest antibacterial activity against P .aeruginosa (4 ± 0.3 mm), A. hydrophila (5.9 ± 0.5 mm), S. aureus (3.5 ± 0.7 mm) and B. subtilis (2.9 ± 0.5 mm) and antioxidant activity, DPPH (81.3 ± 1.0 AAEµg/ml) and FRAP (139.1 ± 1.5 AAEµg/ml).TPC and TFC were higher in the methanolic extract and has exhibited positive correlation with both DPPH and FRAP assays. Considering the in vitro efficiency, methanol extract was purified successively by column and thin layer chromatography and characterisation by GC-MS unveiled the presence of 2-Propanethiol, Trimethylphosphine, Pentanoyl chloride, Dimethylhydroxymethylphosphine and Propanedinitrile, ethylidene. A. hydrophila infected L. rohita fingerlings has survival percentage 81% and 94% in extract treated groups over 0% in negative control and 71% in positive control.