Project description:We recently performed global gene expression in the breast muscles of modern broiler and foundation line chickens. In this study, we have peformed miRNA expression analyses in the same tissues to identify muscle specific miRNAs that could be regulatory factors for muscle growth and feed efficiency in chickens.
Project description:Proteomic analysis was performed on the proximal tibia head from healhty and BCO-affected broiler (meat-type) chickens using Bruker Daltonics amaZon series Mass Spectrometer. This analysis was undertaken to identify key protein signature involved in BCO, a common cause of lameness.
Project description:This study investigates the impact of stress on muscle physiology and meat quality in broiler chickens by comparing protein expression profiles between organic and conventional farming systems using label-free quantitative (LFQ) proteomics. Muscle samples were analyzed via nanoLC-ESI-MS/MS coupled with comprehensive bioinformatics to identify differences in protein abundance associated with rearing conditions.A total of 7,221 proteins were identified, with 1,645 proteins upregulated and 1,612 downregulated in organic chickens compared to conventional ones. Functional analyses including Gene Ontology (GO) and STRING network analyses revealed that proteins upregulated in organic chickens were predominantly involved in oxygen transport, oxygen binding, and muscle structural organization, indicating enhanced oxygen metabolism and muscle development consistent with improved animal welfare. Conversely, proteins related to ribosomal function and RNA binding were enriched in conventional chickens, suggesting stress-related alterations in protein synthesis. KEGG pathway analysis showed significant enrichment of carbon metabolism, amino acid biosynthesis, nitrogen metabolism, and the tricarboxylic acid (TCA) cycle pathways in organic chickens, while glycolysis, gluconeogenesis, and ribosomal pathways were downregulated. Key differentially expressed proteins identified as potential biomarkers distinguishing organic from conventional meat include downregulated PGM1, AMPD1, LDHA, ENO3, and PKLR, and upregulated COL1A1, COL1A2, TTN, TPM2, CA3, MB, HSPB1, ACO2, ACAA2, and TF. These proteins are involved in muscle structure and energy metabolism and may serve as indicators of meat quality linked to stress and welfare conditions. Overall, this proteomic analysis provides novel insights into how stress modulates the muscle proteome in broiler chickens and supports the adoption of welfare-focused organic poultry production practices to improve meat quality.
Project description:Wooden Breast (WB) is a novel myopathy affecting the pectoralis major muscle of modern broiler chickens. We selected pectoralis fillet samples, a normal(healthy) fillet and a WB fillet.
Project description:Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. In the present study we simultaneously characterized the effects of a short term (5 hours) fast or neutralization of insulin action (5 hours) on adipose tissue of young (16-17 day-old), fed commercial broiler chickens.
Project description:This study aimed to compare the differences in plasma proteome between high- and low-body-weight broilers.Ten high-weight broiler chickens and ten low-weight broiler chickens were all 42 days old. The weight of the 10 high-weight chickens was greater than 3.1 kg, and the weight of the 10 low-weight chickens was less than 2.7 kg. Blood was collected from the wing vein of broilers, transferred to anticoagulation tubes, and centrifuged at 3,000 rpm for 10 minutes to separate plasma for proteome sequencing.
Project description:The gut of chicken is mostly colonised with Campylobacter jejuni and with 100 fold less C. coli. The competitive ability of C. coli OR12 over C. jejuni OR1 has been examined in experimental broiler chickens following the observation that C. coli replaced an established C. jejuni intestinal colonisation within commercial chicken flocks reared outdoors (El-Shibiny, A., Connerton, P.L., Connerton, I.F., 2005. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Applied Environmental Microbiology. 71, 1259-1266).
Project description:The process of commercial catching, transport and slaughter (CTS) is known to be an acute stressful event in broiler chickens. Corticosteroid concentrations increase, impacting measures of IGF-1, growth hormone and metabolites of the immune system from blood plasma samples. We used ARK-Genomics chicken 20K oligo array, a two channel DNA microarray, to investigate the significantly differentially expressed genes in the livers of chickens during CTS.
Project description:We report the hepatic response of broiler chickens to an increase in stocking density. Here we compare gene expression profiles of liver cells via RNA-seq of broiler chicken raised under a high stocking density to broiler chickens raised under a lower stocking density with the objective of this study being to identify biomarkers of stress before the clinical and economic impacts are observed. We found that increasing stocking density seems to have a unique impact on hepatic gene expression prior to eliciting common clinical signs associated with stress. The cellular functions that are most affected appear to be those involved in steroidogenesis and cell movement/migration as identified by RNA-seq analysis of the liver transcriptome. These results could provide a baseline of information that future research to identify genes or molecules that could aid in the detection of negative effects of stressors such as stocking density prior to negative clinical and economic signs presenting themselves.