Project description:Sepsis is a serious systemic inflammatory reaction, which often leads to acute lung injury, and then affects lung function. This study aimed to explore the molecular mechanism of the interaction between il1b+ alveolar resident macrophages and pulmonary endothelial cells during sepsis induced lung injury using single-cell RNA sequencing technology.
Project description:Two single-cell RNA sequencing data sets were generated called "Whole lung" and "High Resolution". The "Whole lung" single-cell mRNAseq libraries were generated with Drop-Seq from whole mouse lungs upon bleomycin-induced injury and followed over time. Samples were taken at days 3 (n = 3), 7 (n = 5), 10 (n = 3), 14 (n = 4), 21 (n = 4) and 28 (n = 2). Control samples (n = 7) were administered saline only, also indicated with PBS or day0. The "High resolution" single-cell mRNAseq libraries were generated with Drop-Seq from the epithelial compartment of mouse lungs upon bleomycin-induced injury and followed over time. Samples were taken daily for two weeks and at days 21, 28, 36, 54 after injury. Control samples (n = 2) were administered saline only, also indicated with PBS or day0.
Project description:Data analyzed proteins extracted from lung tissue samples from OA-induced acute lung injury model rats.
Samples were collected at 0 (pretreatment), 3, 6,
24, 48, 96 h after OA administration. Whole tissue extracts were prepared from three individuals and analyzed using the DIA-MS method.
Project description:Yangyinqingfei Decoction (YYQFD), a traditional Chinese prescription, is well known in the treatment of diphtheria and lung-related diseases in clinic. However, the underlying mechanism how to treat lung-related diseases remains unclear. In the present study, the intervention effect of YYQFD on PM2.5-induced lung injury mice and its potential mechanism were investigated by metabolomics and proteomic techniques. The results showed that YYQFD could significantly improve pulmonary functions, relieve lung injury, as well as reduce IL-6, TNF-α and MDA, and increase SOD levels in serum and BALF of PM2.5-induced lung injury mice. Furthermore, the protein-metabolite joint analysis presented that YYQFD regulated the pathways of arachidonic acid metabolism, linoleic acid metabolism, and biosynthesis of unsaturated fatty acids with significantly down-regulating arachidonic acid, 20-HETE, prostaglandin E2, lecithin, linoleic acid, α-linolenic acid, eicosatetraenoic acid, and γ-linolenic acid, and up-regulating PTGES2, GPX2 and CBR3 protein expressions in lung tissue. A regulatory metabolic network map was further constructed, which provide us a better understanding about the role of YYQFD on PM2.5-induced lung injury mice and new insight into YYQFD application for the treatment of lung-related diseases.
Project description:Many lung diseases result from a failure of efficient regeneration of damaged alveolar epithelial cells (AECs) after lung injury. During regeneration, AEC2s proliferate to replace lost cells, after which proliferation halts and some AEC2s transdifferentiate into AEC1s to restore normal alveolar structure and function. Although the mechanisms underlying AEC2 proliferation have been studied, the mechanisms responsible for halting proliferation and inducing transdifferentiation are poorly understood. To identify candidate signaling pathways responsible for halting proliferation and inducing transdifferentiation, we performed single cell RNA sequencing on AEC2s during regeneration in a murine model of lung injury induced by intratracheal LPS. Unsupervised clustering revealed distinct subpopulations of regenerating AEC2s: proliferating, cell cycle arrest, and transdifferentiating. Gene expression analysis of these transitional subpopulations revealed that TGFβ signaling was highly upregulated in the cell cycle arrest subpopulation and relatively downregulated in transdifferentiating cells. In cultured AEC2s, TGFβ was necessary for cell cycle arrest but impeded transdifferentiation. We conclude that during regeneration after LPS-induced lung injury, TGFβ is a critical signal halting AEC2 proliferation but must be inactivated to allow transdifferentiation. This study provides insight into the molecular mechanisms regulating alveolar regeneration and the pathogenesis of diseases resulting from a failure of regeneration.
Project description:We have previously demonstrated that pre-B-cell colony enhancing factor (PBEF) ais a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility118. In the current study, we explored the mechanistic participation of PBEF in ALI and ventilator-induced associated lung injury (VIALI). Initial in vitro studies and demonstrated rhPBEF aas a direct rat neutrophil chemotactic factor in vitro producing marked in vivo increases in BAL leukocytes (PMNs) in vivo following (intratracheal injection (,IT) in C57B6 mice. These latter changes were accompanied by increased BAL levels of the PMN chemoattractants (, KC and MIP2), and modest changes in lung vascular and but were not associated with significant increasesin alveolar permeability. We next explored the potential synergism between rhPBEF administration (IT) and a mechanical ventilation model of modest VILI lung injury (4 hours, 30 ml/kg tidal volume). We and observed dramatic synergistic increases in BAL PMNs, and both BAL protein and cytokine levels (IL-6, TNF-?, KC). Gene expression profiling Microarray analysis further supported a major role for PBEF in the induction of gene modules associated with ALI and VALI (NFkB pathway, leukocyte extravasation, apoptosis, toll receptor signaling). Finally, we exposed wild type and heterozygous PBEF+/- mice (targeted deletion of a single PBEF allele deletion) to a model of severe VILImechanical ventilation-induced lung injury (4 hours, 40 ml/kg tidal volume). PBEF+/- mice were significantly protected from VIALI-associated increases in BAL protein and BAL IL-6 levels and exhibited significantly reduced expression of ALI-associated gene expression modules. Together, these results indicate that PBEF is a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI. Experiment Overall Design: animals were treated by PBS, rhPBEF (IT administration), VILI (4 hours, 30 ml/kg tidal volume), or both.