Project description:The transition from vegetative to reproductive development is one of the most important phase changes in the plant life cycle. This step is controlled by various environmental signals that are integrated at the molecular level by so-called floral integrators. One such floral integrator in Arabidopsis (Arabidopsis thaliana) is the MADS domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Despite extensive genetic studies, little is known about the transcriptional control of SOC1, and we are just starting to explore the network of genes under the direct control of SOC1 transcription factor complexes. Here, we show that several MADS domain proteins, including SOC1 heterodimers, are able to bind SOC1 regulatory sequences. Genome-wide target gene analysis by ChIP-seq confirmed the binding of SOC1 to its own locus and shows that it also binds to a plethora of flowering-time regulatory and floral homeotic genes. In turn, the encoded floral homeotic MADS domain proteins appear to bind SOC1 regulatory sequences. Subsequent in planta analyses revealed SOC1 repression by several floral homeotic MADS domain proteins, and we show that, mechanistically, this depends on the presence of the SOC1 protein. Together, our data show that SOC1 constitutes a major hub in the regulatory networks underlying floral timing and flower development and that these networks are composed of many positive and negative autoregulatory and feedback loops. The latter seems to be crucial for the generation of a robust flower-inducing signal, followed shortly after by repression of the SOC1 floral integrator. A. thaliana SOC1 ChIP-seq w. control, 3 replicates
Project description:The transition from vegetative to reproductive development is one of the most important phase changes in the plant life cycle. This step is controlled by various environmental signals that are integrated at the molecular level by so-called floral integrators. One such floral integrator in Arabidopsis (Arabidopsis thaliana) is the MADS domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Despite extensive genetic studies, little is known about the transcriptional control of SOC1, and we are just starting to explore the network of genes under the direct control of SOC1 transcription factor complexes. Here, we show that several MADS domain proteins, including SOC1 heterodimers, are able to bind SOC1 regulatory sequences. Genome-wide target gene analysis by ChIP-seq confirmed the binding of SOC1 to its own locus and shows that it also binds to a plethora of flowering-time regulatory and floral homeotic genes. In turn, the encoded floral homeotic MADS domain proteins appear to bind SOC1 regulatory sequences. Subsequent in planta analyses revealed SOC1 repression by several floral homeotic MADS domain proteins, and we show that, mechanistically, this depends on the presence of the SOC1 protein. Together, our data show that SOC1 constitutes a major hub in the regulatory networks underlying floral timing and flower development and that these networks are composed of many positive and negative autoregulatory and feedback loops. The latter seems to be crucial for the generation of a robust flower-inducing signal, followed shortly after by repression of the SOC1 floral integrator.
Project description:Floral organs, whose identity is determined by specific combinations of homeotic genes, originate from a group of undifferentiated cells called the floral meristem. In Arabidopsis, the homeotic gene AGAMOUS (AG) terminates meristem activity and promotes development of stamens and carpels. To understand the program of gene expression activated by AG, we followed genome-wide expression during early stamen and carpel development. Keywords: Developmental time course
Project description:The emerging picture of transcriptional regulation is one of unexpected complexity. It is now clear that single transcription factors control hundreds, if not thousands, of direct targets by binding their genomic loci, but it is not understood how many of these are major players and how many are supporting cast. To address this, we leverage a well-characterized developmental network in Arabidopsis and map genome-wide binding of related proteins in multiple tissues. The transcription factor APETALA2 (AP2) has numerous functions, including roles in floral organ identity, seed development and stem cell maintenance. We focus on the role of AP2 in the floral transition and map direct targets on a genome-wide scale. We show that ap2 mutants flower early in long and short days, and that AP2 binds to many loci, most prominently floral pathway integrators, microRNAs and floral organ identity genes, many of which exhibit AP2-dependent transcription. Opposing, logical effects are evident in AP2 binding to two developmental microRNA genes that control AP2 expression, with AP2 positively regulating miR156 and negatively regulating miR172, forming a complex direct feedback loop, which also included all but one of the AP2-like miR172 target clade members. We also seek conserved targets by comparing the genome-wide direct target repertoire of AP2 with that of SCHLAFMÜTZE (SMZ), another member of the AP2-like miR172 target clade that shares partial redundancy, as evidenced by a hexuple mutant for the entire clade that flowered extremely early. Clear similarities and divergence are exposed in the AP2 and SMZ direct target repertoires. Finally, using an inducible expression system, we demonstrate that AP2 has dual molecular roles. It functions both as a transcriptional activator and repressor, directly inducing the expression of the floral repressor AGAMOUS-LIKE 15 (AGL15), and directly repressing the transcription of floral activators like SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). ChIP-Seq of two biological replicates for ATH-AP2 and respective control samples
Project description:Floral transition and flower development are regulated by numerous environmental and endogenous signals, which are integrated at a relatively small number of floral integrators, such as FLOWERING LOCUS T (FT) and SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1). Of the environmental factors, photoperiod is regarded the most important one in promoting floral transition in Arabidopsis thaliana and most labstrains will flower earlier under long day (LD) conditions than under short day (SD) conditions. Arabidopsis is therefore considered a facultative LD plant. To monitor gene expression changes during floral transition and early flower development plants were grown under SD (9 hr light, 15 hr dark) for 30 days. Plants were then shifted to LD (16 hr light, 8 hr dark) conditions to induce flowering. RNA was isolated from micro-dissected apical tissue harvested 0, 3, 5, and 7 days after the shift to LD and double-stranded cDNA was synthesized. Biotinylated cRNA probes were prepared and hybridized to the Affymetrix ATH1 array in duplicate (biological replicates). To study floral transition, we not only analyzed response of wildtype Landsberg erecta (Ler) plants, but also the effect of mutants in the flowering time genes CONSTANS (CO; co-2) and FT (ft-2). Early flower development was analyzed by comparing Col-0 wildtype plants with the meristem identity mutant lfy-12 (Col-0).
Project description:SVP is a key MADS-box transcription factor for Arabidopsis development since it acts both during vegetative and reproductive phases where it plays different roles probably by interacting with different partners to regulate specific sets of target genes. In fact, whereas SVP functions as a repressor of floral transition during the vegetative phase, it works as floral meristem gene during reproductive phase. We studied the behavior of SVP during two distinct developmental phases: the vegetative and reproductive phase. The aim of these studies is to identify subsets of genes that are regulated by SVP by means of Arabidopsis Tiling 1.0R Arrays (Affymetrix) during the two distinct phases of development. Arabidopsis thaliana seedlings and inflorescences were selected at successive stages of early development for RNA extraction and hybridization on Affymetrix microarrays. To evaluate the amount of SVP expression in the vegetative phase we used svp-41 single mutant and wild-type seedlings grown for 2 weeks in Short Day (SD) conditions (8 h light/16 h dark); for the reproductive phase we used wild-type and svp-41 agl24-2 ap1-12 triple mutant inflorescences grown for 2 weeks in SD conditions and then moved in (LD) conditions (16 h light/16 h dark). The inflorescences were collected at 2 weeks after bolting.
Project description:The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. While AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, regulatory genes known to be required for floral organ formation were found to be activated by AP1 at more advanced stages, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning and hormonal pathways. We used the AP1-GR system to conduct chromatin immunoprecipitation experiments with AP1-specific antibodies followed by deep-sequencing (ChIP-Seq) in order to determine AP1 binding sites on a genome-wide scale. Samples were generated from tissue in which the AP1-GR protein was induced for 2h using a single treatment of 1 uM DEX to the shoot apex. As control, we performed ChIP experiments using the same antibody on uninduced tissue. Experiments were done in two biological replicates.