Project description:Saltmarsh (Ammospiza caudacuta) and Nelson's (A. nelsoni) sparrows are sister taxa that breed in tidal marshes along the coast of the Northeastern United States and Canada. The Saltmarsh Sparrow breeds from mid-coast Maine south to Virginia, while the Acadian Nelson's Sparrow breeds from the Canadian maritime provinces south to northern Massachusetts. Here, we present three extralimital observations of breeding Saltmarsh (n = 2) and Nelson's (n = 1) sparrows. In 2021 and 2022, we observed Saltmarsh Sparrow females attending nests at Mendall Marsh, ME, and Milbridge, ME, respectively, approximately 60 and 110 km beyond the documented northern extent of the Saltmarsh Sparrow breeding range. In 2022, we observed a breeding-condition male Nelson's sparrow singing in the upriver portion of a marsh on Cape Cod, Massachusetts, approximately 115 km beyond the previously documented southern extent of the Nelson's Sparrow breeding range. We confirmed morphological species identification using a panel of microsatellite DNA loci. Due to both the well-documented population declines of these species in the region and the intensity of sampling effort undertaken in recent years, we suggest that these observations likely are not indicative of range expansion. However, they do indicate that these 2 taxa have the capacity to use and successfully reproduce in marshes well beyond their established breeding limits. Our findings provide novel insight into the potential for these taxa to occur and successfully breed outside their documented breeding ranges. Given increased interest in their conservation, these results support the idea that management actions aimed at creating or maintaining nesting habitat across both species ranges could benefit both taxa.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:Whole genome sequencing of the Arabidopsis thaliana dot5-1 transposon insertion line described in Petricka et al 2008 The Plant Journal 56(2): 251-263.
Project description:The analysis identifies differentially occupied genomic regions of H2Bub1, H3K79me3, and H3K27ac by RNF40 silencing in HCC1806 cells
Project description:This study aims to investigate the interactions of mutagenic lesions from diethylnitrosamine (DEN) treatment of mouse livers with such processes as replication, transcription, and interaction of DNA with proteins. Liver samples of 15-day old (P15) untreated C3H/HeOuJ mice were isolated and flash-frozen. ChIP-seq was performed to identify CTCF binding sites in livers of ten pooled individuals. The experiment was done with five biological replicates with a matched input library.