Project description:To determine the circRNA expression profile in CRC and matched non-tumor tissues, we uesed circRNA microArray analysis form Arraystar to examine the expression of circRNAs in CRC and matched non-tumor tissues.
Project description:Total RNA from each sample was quantified using the NanoDrop ND-1000. The sample preparation and microarray hybridization were performed based on the Arraystar’s standard protocols. Briefly, total RNA from each sample was amplified and transcribed into fluorescent cRNA utilizing random primer according to Arraystar’s Super RNA Labeling protocol (Arraystar Inc.). The labeled cRNAs were hybridized onto the Arraystar Human circRNA Array (8x15K, Arraystar). After having washed the slides, the arrays were scanned by the Agilent Scanner G2505C.
Project description:Many studies have demonstrated the importance of circRNA in regulating gene expression through functioning as microRNA sponges. However, the roles of circRNA-protein interaction are not fully understood. Importantly, how circRNA-protein interaction contributes the progression of pancreatic ductal adenocarcinoma is largely unexplored. Therefore, RNA Pull down assay for investigating RNA-protein interaction was performed in PANC-1 cells.
Project description:To determine the circRNA expression profile in early stage lung adenocarcinoma and matched non-tumor tissues, we used circRNA microArray analysis form Arraystar to examine the expression of circRNAs Lung adenocarcinoma, a form of NSCLC with high lethality at advanced stage, is becoming more popular in women, non- or never-smokers, and even young adult. However, there are no effective early diagnosis methods at present for patients to cure timely. Circular RNAs (circRNAs) as a special novel, stable, and conserved non-coding RNA in mammalian cells have been reported to be widely involved in the processes of cancer disease. Yet, it is still a puzzle which specific circRNAs are involved in the development of early stage lung adenocarcinoma. Here, tumour samples and paired adjacent normal tissues from 4 patients with early stage lung adenocarcinoma were selected for investigating the expression profile of circRNAs by using the high-throughput circRNA microarray. Bioinformatic analyses were conducted to screen those differentially expressed circRNAs. This work illustrates that clusters of circRNAs are aberrantly expressed in early stage lung adenocarcinoma, which might be able to provide potential targets for the early diagnosis of this disease and new genetic insights into lung cancer.
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage. Four types of human colorectal tissues were selected by colonoscopic resection or colorectal surgery, including 12 normal mucosae, 21 low-grade adenomas (mild or moderate atypical hyperplasia), 30 high-grade adenomas (severe atypical hyperplasia or carcinoma in situ) and 25 adenocarcinomas. Gene expression profiling analysis of these samples was performed using Agilent 4x44K human whole genome gene expression microarray (G4112F).
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage. Four types of human colorectal tissues were selected by colonoscopic resection or colorectal surgery, including 15 normal mucosae, 39 low-grade adenomas (mild or moderate atypical hyperplasia), 20 high-grade adenomas (severe atypical hyperplasia or carcinoma in situ) and 33 adenocarcinomas. MicroRNA expression profiling analysis of these samples was performed on Agilent 8Ã16K Human miRNA Microarray V3 (G4470C).
Project description:To determine the circRNA expression profile in lung adenocarcinoma compared with adjacent normal tissues, we used circRNA microArray analysis form Arraystar to examine the expression of circRNAs in lung adenocarcinoma compared with adjacent normal tissues
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage.