Project description:Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Comparing wt to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis.
Project description:Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Comparing wt to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Comparing wt to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. This study aims at the characterisation of pathomechanisms and signalling in Campylobacter-induced diarrhoea in the human mucosa. During routine colonoscopy, biopsies were taken from patients suffering from campylobacteriosis. RNA-seq of colon biopsies was performed to describe Campylobacter jejuni-mediated effects. Mucosal mRNA profiles of acutely infected patients and healthy controls were generated by deep sequencing using Illumina HiSeq 2500. This data provide the basis for subsequent upstream regulator analysis.
Project description:DksA is well-known for its regulatory role in the transcription of ribosomal RNA and genes involved in amino acid synthesis in many bacteria. DksA is also reported to control expression of virulence genes in pathogenic bacteria. Here, we elucidated the roles of the DksA-like protein (CJJ81176_0160, Cj0125c) in the pathogenesis of Campylobacter jejuni. Like in other bacteria, transcription of stable RNA was repressed by DksA under stressful conditions in C. jejuni. Transcriptomic and proteomic analyses of C. jejuni 81-176 and its isogenic dksA mutant showed differential expression of many genes involved in iron-related metabolism, flagellar synthesis and amino acid metabolism. Also the dksA mutant of C. jejuni demonstrated a decreased ability to invade into intestinal cells and to induce release of interleukin-8 from intestinal cells. These results suggest the DksA-like protein plays an important regulatory role in the physiology and virulence of C. jejuni. Keywords: dksA mutation of Campylobacter jejuni
Project description:Campylobacter jejuni is the prevalent cause of bacterial gastroenteritis in human worldwide. The ability to survive stomach acidity is a fundamental requirement for C. jejuni to colonize the host and cause disease. However, the mechanism of C. jejuni acid survival is still unknown. Herein, we demonstrated that C. jejuni is able to survive acidic conditions at pH 4 up to 8 min without a drop in viability. The acid stimulon of C. jejuni 81-176 revealed the up-regulation of many genes important for Campylobacter acid survival such as heat shock genes and genes involved in energy metabolism. On the other hand, the repression of ribosomal genes highlights the ability of C. jejuni to direct its machinery to survive stressful conditions. Prior acid exposure cross-protected C. jejuni against oxidative stress suggesting an overlap in C. jejuni’s responses to various stresses. Interestingly, the induced expression of virulence genes in C. jejuni upon acid exposure such as the Campylobacter invasion antigen (ciaB) indicates that acid stress plays a role in C. jejuni host pathogenesis. Acid exposure significantly enhanced C. jejuni pathogenesis in both eukaryotic cells and G. melonella. To the best of our knowledge, this is the first study characterizes the influence of acid stress on C. jejuni pathogenesis in an infection model. Altogether, this study uncovers the transcriptional profile of C. jejuni in response to acidic conditions as those encountered in the stomach. In addition, our results demonstrate that acid stress jump-starts C. jejuni for efficient gut colonization and host pathogenesis. Campylobacter jejuni is the prevalent cause of bacterial gastroenteritis in human worldwide. The ability to survive stomach acidity is a fundamental requirement for C. jejuni to colonize the host and cause disease. However, the mechanism of C. jejuni acid survival is still unknown. Herein, we demonstrated that C. jejuni is able to survive acidic conditions at pH 4 up to 8 min without a drop in viability. The acid stimulon of C. jejuni 81-176 revealed the up-regulation of many genes important for Campylobacter acid survival such as heat shock genes and genes involved in energy metabolism. On the other hand, the repression of ribosomal genes highlights the ability of C. jejuni to direct its machinery to survive stressful conditions. Prior acid exposure cross-protected C. jejuni against oxidative stress suggesting an overlap in C. jejuni’s responses to various stresses. Interestingly, the induced expression of virulence genes in C. jejuni upon acid exposure such as the Campylobacter invasion antigen (ciaB) indicates that acid stress plays a role in C. jejuni host pathogenesis. Acid exposure significantly enhanced C. jejuni pathogenesis in both eukaryotic cells and G. melonella. To the best of our knowledge, this is the first study characterizes the influence of acid stress on C. jejuni pathogenesis in an infection model. Altogether, this study uncovers the transcriptional profile of C. jejuni in response to acidic conditions as those encountered in the stomach. In addition, our results demonstrate that acid stress jump-starts C. jejuni for efficient gut colonization and host pathogenesis.
Project description:We examined two variants of the genome-sequenced strain, Campylobacter jejuni NCTC11168, which show marked differences in their virulence properties including colonization of poultry, invasion of Caco-2 cells, and motility. Transcript profiles obtained from whole genome DNA microarrays and proteome analyses demonstrated that these differences are reflected in late flagellar structural components and in virulence factors including those involved in flagellar glycosylation, and cytolethal distending toxin production. We identified putative s28 and s54 promoters for many of the affected genes, and found that greater differences in expression were observed for s28-controlled genes. Inactivation of the gene encoding s28, fliA, resulted in an unexpected increase in transcripts with s54 promoters, as well as decreased transcription of s28-regulated genes. This was unlike the transcription profile observed for the attenuated C. jejuni variant, suggesting that the reduced virulence of this organism was not entirely due to impaired function of s28. However, inactivation of flhA, an important component of the flagellar export apparatus, resulted in expression patterns similar to that of the attenuated variant. These findings indicate that the flagellar regulatory system plays an important role in campylobacter pathogenesis and that flhA is a key element involved in the coordinate regulation of late flagellar genes and of virulence factors in C. jejuni. Furthermore, we provide a model for flagellar regulation, which forms a foundation for the study of the unique regulatory networks in this important human pathogen. Keywords: parallel sample
Project description:C. jejuni, a spiral-shaped gram-negative bacterium, is a leading bacterial cause of human foodborne illness. Acute disease is associated with C. jejuni invasion of the intestinal epithelium. Further, maximal host cell invasion requires the secretion of proteins termed Campylobacter invasion antigens (Cia). As bile acids are known to alter the pathogenic behavior of other gastrointestinal pathogens, we hypothesized that the virulence potential of Campylobacter may be triggered by the bile acid deoxycholate (DOC). In support of this hypothesis, culturing C. jejuni with a physiologically relevant concentration of DOC significantly altered the kinetics of cell invasion as evidenced by gentamicin-protection assays. In contrast to C. jejuni harvested from Mueller-Hinton (MH) agar plates, C. jejuni harvested from MH agar plates supplemented with DOC demonstrated Cia secretion as judged by metabolic labeling experiments. DOC was also found to induce the expression of the ciaB gene as judged by B-galactosidase reporter assays and real-time RT-PCR. Microarray analysis revealed that DOC induced the expression of virulence genes (i.e., ciaB, cmeABC, dccR, and tlyA). In summary, we demonstrate that it is possible to enhance the pathogenic behavior of C. jejuni by modifying the culture conditions. These results provide a foundation to identify genes expressed by C. jejuni in response to in vivo-like culture conditions. Keywords: Stress response
Project description:Filamentation, the transition from rod to filamentous cell morphology, has been identified as a response to stressful conditions in many bacterial species. Campylobacter jejuni exhibits filamentation upon entry to stationary phase. This study examines the cell mophotype specific transciptomes (RNAseq) of C. jejuni.