Project description:This study examines the impact of low salinity and temperature on L. redmanii parasitism in Lake Qarun, Egypt, with an emphasis on analyzing the functional gene expression of the parasite, based on RNA sequencing (RNA-Seq). Through the use of de novo transcriptome assembly, this research seeks to identify genes with differential expression in the parasite under different environmental conditions. Thereby, uncovering molecular pathways associated with stress adaptation, metabolism, and virulence.
Project description:Arundo donax L. is one of the most promising bioenergy crop due to its high biomass yield and low irrigation requirement. The resistance to biotic and abiotic stress causes the high invasiveness of this plant, which can grow with very low management input (e.g., pesticides, fertilization, irrigation) even in marginal lands or in fields irrigated with waste or salty water. We report the leaf transcriptome sequencing, de novo assembly and annotation of a giant reed G34 genotype under salt stress. This genotype shows a different transcriptomic response to salinity compared to other A. donax genotypes. This finding was unexpected considering that the genetic variability of this species is supposed to be low due to its vegetative reproductive process. This study aims to direct future efforts towards the A. donax genetic improvement.
Project description:Oilseed mustard, Brassica juncea, exhibits high levels of genetic variability for salinity tolerance. To obtain the global view of transcriptome and investigate the molecular basis of salinity tolerance in a salt-tolerant variety CS52 of B. juncea, we performed transcriptome sequencing of control and salt-stressed seedlings. De novo assembly of 184 million high-quality paired-end reads yielded 42,327 unique transcripts longer than 300 bp with RPKM ≥1. When compared with non-redundant proteins, we could annotate 67% unigenes obtained in our study. Based on the mapping to expressed sequence tags (ESTs), 52.6% unigenes are novel compared to EST data available for B. juncea and constituent genomes. Differential expression analysis revealed altered expression of 1469 unigenes in response to salinity stress. Of these, 587, mainly associated with ROS detoxification, sulfur assimilation and calcium signaling pathways, are up regulated. Notable of these is RSA1 (SHORT ROOT IN SALT MEDIUM 1) INTERACTING TRANSCRIPTION FACTOR 1 (RITF1) homolog up regulated by >100 folds in response to stress. RITF1, encoding a bHLH transcription factor, is a positive regulator of SOS1 and several key genes involved in scavenging of salt stress-induced reactive oxygen species (ROS). Further, we performed comparative expression profiling of key genes implicated in ion homeostasis and sequestration (SOS1, SOS2, SOS3, ENH1, NHX1), calcium sensing pathway (RITF1) and ROS detoxification in contrasting cultivars, B. juncea and B. nigra, for salinity tolerance. The results revealed higher transcript accumulation of most of these genes in B. juncea var. CS52 compared to salt-sensitive cultivar even under normal growth conditions. Together, these findings reveal key pathways and signaling components that contribute to salinity tolerance in B. juncea var. CS52. We report transcriptome sequencing of two-weeks-old seedlings of B. juncea var. CS52 under normal growth conditions (CTRL) and in response to salinity stress (SS) using Illumina paired-end sequencing
Project description:Oilseed mustard, Brassica juncea, exhibits high levels of genetic variability for salinity tolerance. To obtain the global view of transcriptome and investigate the molecular basis of salinity tolerance in a salt-tolerant variety CS52 of B. juncea, we performed transcriptome sequencing of control and salt-stressed seedlings. De novo assembly of 184 million high-quality paired-end reads yielded 42,327 unique transcripts longer than 300 bp with RPKM ≥1. When compared with non-redundant proteins, we could annotate 67% unigenes obtained in our study. Based on the mapping to expressed sequence tags (ESTs), 52.6% unigenes are novel compared to EST data available for B. juncea and constituent genomes. Differential expression analysis revealed altered expression of 1469 unigenes in response to salinity stress. Of these, 587, mainly associated with ROS detoxification, sulfur assimilation and calcium signaling pathways, are up regulated. Notable of these is RSA1 (SHORT ROOT IN SALT MEDIUM 1) INTERACTING TRANSCRIPTION FACTOR 1 (RITF1) homolog up regulated by >100 folds in response to stress. RITF1, encoding a bHLH transcription factor, is a positive regulator of SOS1 and several key genes involved in scavenging of salt stress-induced reactive oxygen species (ROS). Further, we performed comparative expression profiling of key genes implicated in ion homeostasis and sequestration (SOS1, SOS2, SOS3, ENH1, NHX1), calcium sensing pathway (RITF1) and ROS detoxification in contrasting cultivars, B. juncea and B. nigra, for salinity tolerance. The results revealed higher transcript accumulation of most of these genes in B. juncea var. CS52 compared to salt-sensitive cultivar even under normal growth conditions. Together, these findings reveal key pathways and signaling components that contribute to salinity tolerance in B. juncea var. CS52.
Project description:In this study, we aim to present a global view of transcriptome dynamics during salinity stress in different chickpea genotypes. We generated about 600 million high-quality reads from 16 libraries (control and stress samples for two chickpea genotypes for salinity stress at two developmental stages) using Illumina high-throughput sequencing platform. We mapped the reads to the kabuli chickpea genome for estimation of their transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses between stress treatment and control sample for each genotype.
Project description:In order to understand molecular mechanisms of salt stress tolerance in rice several researches have been reported, however there are still unclear processes involved in salt tolerance. For reaching to a better perspective of the molecular mechanisms, we designed a comprehensive transcriptome study consisting contrasting genotypes, different tissues and different sampling time points. Two contrasting genotypes were selected and grown in Yoshida hydroponic medium for 14 days under controlled conditions. For salinity stress half of the seedlings were under 150 mM NaCl and after 6 and 54 h the treated and untreated samples were harvested in three replications from roots and shoots separately
Project description:We first report the use of next-generation massively parallel sequencing technologies and de novo transcriptome assembly to gain insight into the wide range of transcriptome of Hevea brasiliensis. The output of sequenced data showed that more than 12 million sequence reads with average length of 90nt were generated. Totally 48,768 unigenes (mean size = 488 bp) were assembled through transcriptome de novo assembly, which represent more than 3-fold of all the sequences of Hevea brasiliensis deposited in the GenBank. Assembled sequences were annotated with gene descriptions, gene ontology and clusters of orthologous group terms. Total 37,373 unigenes were successfully annotated and more than 10% of unigenes were aligned to known proteins of Euphorbiaceae. The unigenes contain nearly complete collection of known rubber-synthesis-related genes. Our data provides the most comprehensive sequence resource available for study rubber tree and demonstrates the availability of Illumina sequencing and de novo transcriptome assembly in a species lacking genome information. The transcriptome of latex and leaf in Hevea brasiliensis