Project description:Extracellular vesicles derived from milk are known to play a significant role in regulating gut microbiota. However, few studies have focused on the effects of these vesicles on specific bacterial species. This study aimed to investigate how bovine colostrum-derived extracellular vesicles (BCEVs) affect the growth and viability of commensal bacteria, specifically Akkermansia muciniphila. BCEVs and A. muciniphila were co-cultured to measure growth rates using spectrophotometry, and cell viability was assessed at the endpoints. Additionally, to determine whether BCEVs enhance the survival of A. muciniphila in the presence of Caco-2 cells, an anaerobic co-culture experiment was conducted to determine the specific interaction between intestinal epithelial cells and gut microbiota using a Transwell system. The results showed that co-culture with BCEVs increased the growth rate and viability of A. muciniphila. Consistent with this, increased viability of A. muciniphila was observed when it was co-cultured with Caco-2 cells. Transcriptomic analysis revealed that BCEVs regulate nitrogen metabolism in A. muciniphila, enhancing the growth rate and viability. Thus, regulating beneficial gut bacteria, such as A. muciniphila, through BCEVs presents a novel biological approach that positively impacts human health.
Project description:Akkermansia muciniphila, a common member of the human gut microbiota, is considered to be a beneficial resident of the intestinal mucus layer. Surface-exposed molecules produced by this organism likely play important roles in colonization and communication with other microbes and the host, but the protein composition of the outer membrane has not been characterized thus far. Herein we identify A. muciniphila proteins after enrichment and fractionation of the outer membrane proteome of A. muciniphila.
Project description:Akkermansia muciniphila is recognized as a promising probiotic that improves the symptoms of a variety of diseases. However, the role and mechanism of A. muciniphila in regulating intestinal homeostasis remain to be explored. Here, we discovered that A. muciniphila was dramatically increased during colitis recovery, and its colonization greatly increased goblet cells to protect the intestinal barrier in mice. Amuc_0904, a previously uncharacterized A. muciniphila outer membrane protein, was identified to induce goblet cell differentiation.
Project description:This study was conducted in order to monitor whether or not Akkermansia muciniphila was able to grow and utilize human milk and human milk oligosaccharides by deploying its mucin degrading enzymes. Interestingly, A. muciniphila was able to grow in human milk producing Short Chain Fatty Acids and degrade milk oligosaccharides (2’-fucosyllactose, 3’-siallylactose) as well as lactose.