Project description:Analysis of poorly differentiated LiSa-2 liposarcoma (LS) cells treated with the synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) or DMSO or a combination of CDDO and DMSO for up to 11 days. Synthetic triterpenoids exert a variety of actions, including anti-proliferative and proapoptotic effects, making them potentially useful in cancer therapy. Results provide insight into the pathogenesis of LS. Keywords: disease state analysis, CDDO effect, time course Temporal analysis of human liposarcoma cell line LiSa-2 subjected to treatment with a synthetic triterpenoid.
Project description:Analysis of poorly differentiated LiSa-2 liposarcoma (LS) cells treated with the synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) or DMSO or a combination of CDDO and DMSO for up to 11 days. Synthetic triterpenoids exert a variety of actions, including anti-proliferative and proapoptotic effects, making them potentially useful in cancer therapy. Results provide insight into the pathogenesis of LS. Keywords: disease state analysis, CDDO effect, time course
Project description:Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct hepatic gene expression profiles between Keap1 knockout and triterpenoid treated mice; Loss of Nrf2 signaling increases susceptibility to acute toxicity, inflammation, and carcinogenesis in mice due to the inability to mount adaptive responses. By contrast, disruption of Keap1 (a cytoplasmic modifier of Nrf2 turnover) protects against these stresses in mice; although dominant negative mutations in Keap1 have been identified recently in some human cancers. Global characterization of Nrf2 activation is important to exploit this pathway for chemoprevention in healthy, yet at-risk individuals and also to elucidate the consequences of hijacking the pathway in Keap1-mutant human cancers. This analysis also enables a global characterization of the pharmacodynamic action of CDDO-Im at a low dose that is relevant to chemoprevention. Experiment Overall Design: Liver-targeted conditional Keap1-null (CKO) mice provide a model of genetic activation of Nrf2 signaling. By coupling global gene expression analysis of CKO mice with analysis of pharmacologic activation using the synthetic oleanane triterpenoid CDDO-Im, we are able to gain insight into pathways affected by Nrf2 activation. CDDO-Im is an extremely potent activator of Nrf2 signaling. CKO mice were used to identify genes modulated by genetic activation of Nrf2 signaling. The CKO response was compared to hepatic global gene expression changes in wild-type mice treated with CDDO-Im at a maximal Nrf2 activating dose. n=3/group, male 9 week old mice were used. Mice were treated with a single dose of vehicle (10% Cremophor-EL, 10% DMSO, and PBS) or 30 umol CDDO-Im/kg body weight by gavage and sacrificed 6 h later.
Project description:Alzheimer’s disease (AD) is the most common etiology of dementia. The transcription factor NF-E2-related factor 2 (NRF2) induces the expression of genes encoding phase II detoxification and antioxidant genes. NRF2 is regulated by Kelch-like ECH-associated protein 1 (KEAP1), and the KEAP1-NRF2 system is the key regulatory system involved in cytoprotection. To examine whether pharmacological induction of NRF2 expression alleviates AD phenotypes in vivo, we employed two AD mouse models, i.e., AppNL-G-F/NL-G-F (AppNLGF) and APPV717I::TAUP301L (APP/TAU) mice. As the synthetic oleanane triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11-dien-28-oyl)] (CDDO)-4(-pyridin-2-yl)-imidazole (CDDO-2P-Im) exhibits strong NRF2-inducing activity, in this study, we treated AD model mice with CDDO-2P-Im.
Project description:KEAP1 negatively regulates the cytoprotective factor NRF2 and is commonly inactivated in lung cancer cells. Loss of function KEAP1 mutations in cancer cells contribute to NRF2 activation and tumor immune evasion through immunosuppression and drug resistance. Counterintuitively, treatment with synthetic oleanane triterpenoids, potent NRF2 activa-tors, reduces preclinical tumor burden. This suggests the functional target of these drugs in cancer models is not the cancer cells but another tumor immune microenvironment (TIME) cell population. The anti-tumor potential of cells within the TIME, particularly macrophages, is potentiated by triterpenoid treatment in cancers with wild-type KEAP1 status. As KEAP1-mutant cancers show reduced tumor immune responses, triterpenoid-mediated immune stimulation may particularly benefit these cases, but this has not been investigated. To characterize the immunomodulatory effects of triterpenoids in KEAP1-mutant lung cancer, we studied tumor-educated bone marrow-derived macrophages (TE-BMDMs) and lung cancer models treated with the triterpenoids CDDO-Me or omaveloxolone. RNA-sequencing of TE-BMDMs cultured in KEAP1 KO compared to WT cancer-conditioned media had enhanced tumor-promoting phenotypes which reversed with CDDO-Me treatment. Similarly, subcutaneous KEAP1 KO tumors were larger and more immune-suppressed compared to WT tumors. Both CDDO-Me and omaveloxolone reduced tumor burden and improved immune cell phenotypes within the TIME, independent of KEAP1 mutational status.
Project description:FUS-CHOP and EWS-CHOP balanced translocations characterize myxoid liposarcoma which encompasses myxoid (ML) and round cell (RC) variants initially believed to be distinct diseases. Currently, myxoid and RC liposarcoma are regarded to represent the well differentiated and the poorly differentiated ends, respectively, within spectrum of myxoid liposarcoma where the fusion proteins blocking lipogenic differentiation play a role in tumor initiation while molecular determinants associated to progression to RC remain poorly understood. Activation of AKT pathway sustained by PIK3CA and PTEN mutations and growth factor receptor signalling such as RET and IGF1R have been recently correlated with the increasing of aggressiveness and RC. Aim of the present study is to elucidate molecular events involved in driving round cell progression analyzing two small series of MLS selected to be representative of the two end of the gamut: the pure myxoid (0% of RC component) and RC with high cellular component (≥80%).
Project description:FUS-CHOP and EWS-CHOP balanced translocations characterize myxoid liposarcoma which encompasses myxoid (ML) and round cell (RC) variants initially believed to be distinct diseases. Currently, myxoid and RC liposarcoma are regarded to represent the well differentiated and the poorly differentiated ends, respectively, within spectrum of myxoid liposarcoma where the fusion proteins blocking lipogenic differentiation play a role in tumor initiation while molecular determinants associated to progression to RC remain poorly understood. Activation of AKT pathway sustained by PIK3CA and PTEN mutations and growth factor receptor signalling such as RET and IGF1R have been recently correlated with the increasing of aggressiveness and RC. Aim of the present study is to elucidate molecular events involved in driving round cell progression analyzing two small series of MLS selected to be representative of the two end of the gamut: the pure myxoid (0% of RC component) and RC with high cellular component (≥80%).