Project description:CD3+ T cells derived from bone marrow aspirates and peripheral blood samples of newly diagnosed AA patients and healthy volunteers were analysed using Affymetrix HG_U133A GeneChips. Additionally, two patients were studied after achieving a partial remission (post-Therapy). Experiment Overall Design: Altogether, we analysed 8 different samples. Pool I contained three female and one male patients, 19 to 70 years old, suffering from (severe) aplastic anemia. From these four donors, samples derived from bone marrow aspirates and from peripheral blood, were pooled on total-RNA basis. Pool II consisted of additional two patients, one male (64 years old) and one female (70 years old). From both donors, total-RNA was extracted and pooled from CD3+ T cells derived either from bone marrow or peripheral blood, each prior and post therapy. Healthy control pools included three donors for the peripheral blood sample and two donors for bone marrow derived T cells.
Project description:Transcriptome analysis of hematopoietic stem and progenitor cells (HSPCs) and T cells collected from bone marrow and peripheral blood of healthy donors and aplastic anemia patients untreated or response to immunosuppressive therapy.
Project description:Bulk RNA-seq data of Lin-CD34+ hematopoietic stem and progenitor cells derived from bone marrow of healthy donors and untreated aplastic anemia patients
Project description:CD3+ T cells derived from bone marrow aspirates and peripheral blood samples of newly diagnosed AA patients and healthy volunteers were analysed using Affymetrix HG_U133A GeneChips. Additionally, two patients were studied after achieving a partial remission (post-Therapy). Keywords: disease vs health vs response to therapy
Project description:Fanconi anemia (FA) is a rare inherited disease complicated by aplastic anemia. There is evidence that hematopoietic stem cells have lost self replicative capacity and undergo apoptosis when exposed to inhibitory cytokines including interferon gamma and tumor necrosis factor-alpha. We used gene expression microarrays to identify transcriptomal differences between bone marrow cells from normal volunteers and from children and adults with Fanconi anemia Experiment Overall Design: Fanconi anemia patients were identified using mitomycin C and/or diepoxybutane chromosomal breakage analysis. Eleven normal volunteers and 21 FA patients were studied. All FA patients with cytogenetic evidence of clonal evolution were excluded. All FA patients with acute leukemia were excluded. RNA was prepared from freshly obtained low density mononuclear cell fractions.
Project description:We performed single cell RNA sequencing, and VDJ sequencing of TCR and BCR of bone marrow samples (BMMMNCs and sorted CD34+ HSPCs) from 20 patients with severe aplastic anemia (SAA), pre- and post-treatment, to understand disease pathogenesis and response to treatment.
Project description:Bone marrow nucleated cells (BMNCs) from healthy donors and patients with non-severe aplastic anemia (NSAA) at the time of initial diagnosis were separated, and then co-cultured with or without 40 μg/mL levamisole (LMS) for 48 hours in vitro. Cells were harvested and total RNA were extracted. The sequencing assay were carried out using the Illumina HiSeq X platform and the data obtained were analyzed by following the Hisat2 protocol.
Project description:Chromium V(D)J and 5' Gene Expression platform (10X Genomics) was used to study patients with aplastic anemia. CD45+ cells from two patients (patient AA-3: 3 longitudinal samples from bone marrow and patient AA-4: 3 longitudinal samples from peripheral blood) were analysed. The raw data was processed using Cell Ranger 3.0.1 pipelines.
Project description:Fanconi anemia (FA) is a rare inherited disease complicated by aplastic anemia. There is evidence that hematopoietic stem cells have lost self replicative capacity and undergo apoptosis when exposed to inhibitory cytokines including interferon gamma and tumor necrosis factor-alpha. We used gene expression microarrays to identify transcriptomal differences between bone marrow cells from normal volunteers and from children and adults with Fanconi anemia
Project description:Acquired aplastic anemia (AA) is an immune-mediated disease with active destruction of hematopoietic stem and progenitor cells by the cytotoxic T-cells in bone marrow. Aberrant expression of microRNAs in T-cells results in development of some autoimmune diseases.Screening the potential miRNAs which may play regulatory role in T cells of AA is meaningful to explore the mechanism of AA. We used microarrays to screen the differential expression pattern of miRNAs in T cells of aplatic anemia patients to find the potential regulatory miRNAs.