Project description:Although the biodegradation of biodegradable plastics in soil and compost is well-studied, there is little knowledge on the metabolic mechanisms of synthetic polymers degradation by marine microorganisms. Here, we present a multiomics study to elucidate the biodegradation mechanism of a commercial aromatic-aliphatic copolyester film by a marine microbial enrichment culture. The plastic film and each monomer can be used as sole carbon source. Our analysis showed that the consortium synergistically degrades the polymer, different degradation steps being performed by different members of the community. Analysis of gene expression and translation profiles revealed that the relevant degradation processes in the marine consortium are closely related to poly(ethylene terephthalate) biodegradation from terrestrial microbes. Although there are multiple genes and organisms with the potential to perform a degradation step, only a few of these are active during biodegradation. Our results elucidate the potential of marine microorganisms to mineralize biodegradable plastic polymers and describe the mechanisms of labor division within the community to get maximum energetic yield from a complex synthetic substrate.
Project description:Phytoplankton and bacteria form the base of marine ecosystems and their interactions drive global biogeochemical cycles. The effect of bacteria and bacteria-produced compounds on diatoms range from synergistic to pathogenic and can affect the physiology and transcriptional patterns of the interacting diatom. Here, we investigate physiological and transcriptional changes in the marine diatom Thalassiosira pseudonana induced by extracellular metabolites of a known antagonistic bacterium Croceibacter atlanticus. Mono-cultures of C. atlanticus released compounds that inhibited diatom cell division and elicited a distinctive phenotype of enlarged cells with multiple plastids and nuclei, similar to what was observed when the diatom was co-cultured with the live bacteria. The extracellular C. atlanticus metabolites induced transcriptional changes in diatom pathways that include recognition and signaling pathways, cell cycle regulation, carbohydrate and amino acid production, as well as cell wall stability. Phenotypic analysis showed a disruption in the diatom cell cycle progression and an increase in both intra- and extracellular carbohydrates in diatom cultures after bacterial exudate treatment. The transcriptional changes and corresponding phenotypes suggest that extracellular bacterial metabolites, produced independently of direct bacterial-diatom interaction, may modulate diatom metabolism in ways that support bacterial growth.
Project description:We isolate the cultivable microbiome of a diatom and show that different bacteria have commensal, antagonistic, or synergistic effects on the diatom. One synergistic bacterium enhances growth of the diatom by production of auxin, a phytohormone. The diatom and its synergistic bacterium appear to use auxin and tryptophan as signaling molecules that drive nutrient exchange. Detection of auxin molecules and biosynthesis gene transcripts in the Pacific Ocean suggests that these interactions are widespread in marine ecosystems.
2015-05-29 | GSE65189 | GEO
Project description:Spatio-temporal succession of plastisphere communities and their potentials for plastic degradation in freshwater ecosystems
Project description:To characterize the taxonomic and functional diversity of biofilms on plastics in marine environments, plastic pellets (PE and PS, ø 3mm) and wooden pellets (as organic control) were incubated at three stations: at the Baltic Sea coast in Heiligendamm (coast), in a dead branch of the river Warnow in Warnemünde (inlet), and in the Warnow estuary (estuary). After two weeks of incubation, all pellets were frozen for subsequent metagenome sequencing and metaproteomic analysis. Biofilm communities in the samples were compared on multiple levels: a) between the two plastic materials, b) between the individual incubation sites, and c) between the plastic materials and the wooden control. Using a semiquantitative approach, we established metaproteome profiles, which reflect the dominant taxonomic groups as well as abundant metabolic functions in the respective samples.
Project description:We assessed the whole genome response of C. elegans exposed for 48 hours from L1 to the pristine silver nanomterials, artifically aged silver nanomatierls, and AgNO3.
Project description:Background: Ocean temperatures are projected to increase over the coming century, with dramatic consequences for the marine biosphere. Diatoms are important contributors to marine primary production and the ocean carbon cycle, yet the molecular mechanisms that regulate their acclimation and adaptation to temperature are poorly understood. Method: Here we use a transcriptomic approach to identify the molecular mechanisms associated with temperature acclimation and adaptation in closely related colder- and warmer-adapted diatom species. Results: We find contrasting patterns of differential expression at sub- and supra-optimal temperatures across the two species, which may be due to adaptive changes in baseline expression. Frontloaded and divested pathways indicate protein processing machinery, membrane structure, and the balance between temperature-independent photosynthesis and temperature-dependent metabolism are key elements of adaptation to temperature changes. Conclusions: Our findings suggest that transcriptional frontloading and divestment may provide a framework to interpret diatom acclimation and adaptation to temperature and success under future warming.
Project description:Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity, at the base of marine food webs, is constrained by nutrient availability in the surface ocean, and nutrient advection from deeper waters can fuel photosynthesis. In this study, we compared the transcriptional responses by surface microbial communities after experimental deep water mixing to the transcriptional patterns of in situ microbial communities collected with high-resolution automated sampling during a bloom in the North Pacific Subtropical Gyre. Transcriptional responses were assayed with the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) marine environmental microarray, which targets all three domains of life and viruses. The experiments showed that mixing of deep and surface waters substantially affects the transcription of photosystem and nutrient response genes among photosynthetic taxa within 24 hours, and that there are specific responses associated with the addition of deep water containing particles (organisms and detritus) compared to filtered deep water. In situ gene transcription was most similar to that in surface water experiments with deep water additions, showing that in situ populations were affected by mixing of nutrients at the six sampling sites. Together, these results show the value of targeted metatranscriptomes for assessing the physiological status of complex microbial communities.
Project description:We assessed the whole genome response of C. elegans exposed for 48 hours from L1 to the pristine silver nanomterials, artifically aged silver nanomatierls, and AgNO3. Single time point RNA extraction from a population of 2000-3000 nematodes exposed to the EC30 for reproduction.