Project description:We reported the microbial communities in wastewater between conventional membrane bioreactor (MBR) system and biofilm MBR system using Illumina sequencing.
Project description:This study explores the effectiveness of an integrated anaerobic membrane bioreactor (AnMBR) coupled with an anoxic/oxic membrane bioreactor (A/O MBR) for the treatment of natural rubber industry wastewater with high sulfate, ammonia, and complex organic contents. This study was conducted at the lab-scale over a duration of 225 days to thoroughly investigate the efficiency and sustainability of the proposed treatment method. With a hydraulic retention time of 6 days for the total system, COD reductions were over 98%, which reduced the influent from 22,158 ± 2859 mg/L to 118 ± 74 mg/L of the effluent. The system demonstrates average NH3-N, TN, and total phosphorus (TP) removal efficiencies of 72.9 ± 5.7, 72.8 ± 5.6, and 71.3 ± 9.9, respectively. Despite an average whole biological system removal of 50.6%, the anaerobic reactor eliminated 44.9% of the raw WW sulfate. Analyses of membrane fouling revealed that organic fouling was more pronounced in the anaerobic membrane, whereas aerobic membrane fouling displayed varied profiles due to differential microbial and oxidative activities. Key bacterial genera, such as Desulfobacterota in the anaerobic stage and nitrifiers in the aerobic stage, are identified as instrumental in the biological processes. The microbial profile reveals a shift from methanogenesis to sulfide-driven autotrophic denitrification and sulfammox, with evidence of an active denitrification pathway in anaerobic/anoxic conditions. The system showcases its potential for industrial application, underpinning environmental sustainability through improved wastewater management.
Project description:Membrane bioreactor (MBR) systems are typically known different from conventional activated sludge (CAS) systems in operational parameters, while current knowledge of their microbial differentiations is barely sufficient. To this end, the current study was launched to address the differences of the overall functional genes of an oxidation ditch (OD) and an MBR running parallelly at full-scale using a functional gene array-GeoChip 4.2. Two full-scale wastewater treatment systems applying the processes of oxidation ditch (OD) and membrane bioreactor (MBR) were investigated. They treated identical wastewater at the same scale. 12 mixed-liquor suspended sludge (MLSS) samples collected daily on 12 consecutive days from each system were analyzed by GeoChip 4.2.