Project description:Given the widespread use of insecticides in the environment, it is important to perform studies evaluating their potential effects on humans. Organophosphate insecticides, such as chlorpyrifos, are being phased out; however, the use of pyrethroids in household pest control is increasing. While chlorpyrifos is relatively well studied, much less is known about the potential neurotoxicity of cyfluthrin and other pyrethroids. To gain insights into the neurotoxicity of cyfluthrin, we compared and evaluated the toxicity profiles of chlorpyrifos and cyfluthrin in primary human fetal astrocytes. We found that at the same concentrations, cyfluthrin exerts as great as, or greater toxic effects on the growth, survival, and proper functioning of human astrocytes. By using microarray gene expression profiling, we systematically identified and compared the potential molecular targets of chlorpyrifos and cyfluthrin, at a genome-wide scale. We found that chlorpyrifos and cyfluthrin affect a similar number of transcripts. These targets include molecular chaperones, signal transducers, transcriptional regulators, transporters, and those involved in behavior and development. Further computational and biochemical analyses show that cyfluthrin and chlorpyrifos upregulate certain targets of the interferon-gamma and insulin-signaling pathways and that they increase the protein levels of activated extracellular signal-regulated kinase 1/2, a key component of insulin signaling; interleukin 6, a key inflammatory mediator; and glial fibrillary acidic protein, a marker of inflammatory astrocyte activation. These results suggest that inflammatory activation of astrocytes might be an important mechanism underlying neurotoxicity of both chlorpyrifos and cyfluthrin.
Project description:Given the widespread use of insecticides in the environment, it is important to perform studies evaluating their potential effects on humans. Organophosphate insecticides, such as chlorpyrifos, are being phased out; however, the use of pyrethroids in household pest control is increasing. While chlorpyrifos is relatively well studied, much less is known about the potential neurotoxicity of cyfluthrin and other pyrethroids. To gain insights into the neurotoxicity of cyfluthrin, we compared and evaluated the toxicity profiles of chlorpyrifos and cyfluthrin in primary human fetal astrocytes. We found that at the same concentrations, cyfluthrin exerts as great as, or greater toxic effects on the growth, survival, and proper functioning of human astrocytes. By using microarray gene expression profiling, we systematically identified and compared the potential molecular targets of chlorpyrifos and cyfluthrin, at a genome-wide scale. We found that chlorpyrifos and cyfluthrin targeted a similar number of transcripts. These targets include chaperones, signal transducers, transcriptional regulators, transporters, and those involved in behavior and development. Further computational and biochemical analyses suggest that cyfluthrin and chlorpyrifos up-regulated certain targets of the interferon-gamma and insulin signaling pathways, and that they increased the protein levels of activated ERK1/2, a key component of insulin signaling; IL-6, a key inflammatory mediator; and GFAP, a marker of inflammatory astrocyte activation. These results suggest that inflammatory activation of astrocytes might be an important mechanism underlying neurotoxicity of both chlorpyrifos and cyfluthrin. Keywords: treatment comparison
Project description:Chlorpyrifos is an organophosphorus insecticide that despite imposed restricitions on its use by the EPA, is one of the most commonly used insecticides. Although CPF is so widely used little is known about its effect on overall gene expression in vivo. DNA microarray technology was used to determine differential gene expression resulting from chlorpyrifos (CPF) exposure. Keywords: Dose course
Project description:HOXA9 transcriptomic analysis in GBM cell lines (U87MG, U251 and primary GBML18) and in immortalized human astrocytes (hTERT/E6/E7)
Project description:Chlorpyrifos is an organophosphorus insecticide that despite imposed restricitions on its use by the EPA, is one of the most commonly used insecticides. Although CPF is so widely used little is known about its effect on overall gene expression in vivo. DNA microarray technology was used to determine differential gene expression resulting from chlorpyrifos (CPF) exposure. Experiment Overall Design: Male Fisher 344 rats aged 11-12 weeks were treated with varying doses of chlorpyrifos (CPF) and terminally sacced at 96 hours post-exposure in three separate experiments. An approximate 30mg section of the frontal lobe of the brain was processed for total RNA extraction.
Project description:Transcription profiling by array of human primary astrocytes, cancer stem cells derived from astrocytes overexpressing various oncogenic and iPSC-inducing factors, glioma stem cells and gliblastomat cell line to compare their expression profiles and tumor-initiating capabilities
Project description:Transcriptional profiling of mouse primary astrocytes comparing control untreated astrocytes with astrocytes treated with recombinant LCN2 protein (10 micro gram/ml). Goal was to determine the effects of LCN2 treatment on global gene expression in astrocytes. A secreted protein lipocalin-2 (LCN2) has been implicated in diverse cellular processes including cell morphology and migration. We have previously demonstrated that lcn2 mediates reactive astrocytosis. In order to further understand the role of lcn2 in the CNS, astrocyte transcriptome was analyzed following LCN2 treatment. Chemokines were the major group of genes upregulated by LCN2. Two-condition experiment, control untreated astrocytes vs. LCN2 protein treated astrocytes. Biological replicates: 1 control replicates, 1 treated replicates.