Project description:Meiosis was compared in rad50-1 and wild type strains of C. cinerea at 6 time points spanning the meiotic timecourse. Abstract: The basidiomycete Coprinopsis cinerea is well-suited to studies of meiosis because meiosis progresses synchronously in ten million cells within each mushroom cap. Approximately 20% of C. cinerea genes exhibit changing expression during meiosis, but meiosis and mushroom development happen concurrently so differentially expressed genes might not be directly involved in meiotic processes. Using microarrays, we examined global gene expression across a meiotic time course in two mutants in which meiosis arrests but mushrooms develop normally. Genes differentially expressed in the mutants compared to wild type are likely to be involved in meiosis and sporulation as opposed to mushroom development. In rad50-1, which arrests in late prophase, RNA abundance for a group of early meiotic genes remains high, while the expression of a group of late meiotic genes is never induced. In contrast, in msh5-22 (which fails to undergo pre-meiotic DNA replication), both early and late meiotic genes are underexpressed relative to wild type at late meiotic time points as the cells die. Genes that are differentially expressed in both mutants are particularly strong candidates for playing roles in meiosis and sporulation. Five time points were analyzed, with four biological replicate rad50-1 samples used for each timepoint. Reference wild-type samples consisted of pooled RNA from ten samples at the appropriate timepoint.
Project description:Meiosis was compared in msh5-22 and wild type strains of C. cinerea at 6 time points spanning the meiotic timecourse. Abstract: The basidiomycete Coprinopsis cinerea is well-suited to studies of meiosis because meiosis progresses synchronously in ten million cells within each mushroom cap. Approximately 20% of C. cinerea genes exhibit changing expression during meiosis, but meiosis and mushroom development happen concurrently so differentially expressed genes might not be directly involved in meiotic processes. Using microarrays, we examined global gene expression across a meiotic time course in two mutants in which meiosis arrests but mushrooms develop normally. Genes differentially expressed in the mutants compared to wild type are likely to be involved in meiosis and sporulation as opposed to mushroom development. In rad50-1, which arrests in late prophase, RNA abundance for a group of early meiotic genes remains high, while the expression of a group of late meiotic genes is never induced. In contrast, in msh5-22 (which fails to undergo pre-meiotic DNA replication), both early and late meiotic genes are underexpressed relative to wild type at late meiotic time points as the cells die. Genes that are differentially expressed in both mutants are particularly strong candidates for playing roles in meiosis and sporulation. Six time points were analyzed, with four biological replicate msh5-22 samples used for each timepoint. Reference wild-type samples consisted of pooled RNA from ten samples at the appropriate timepoint.
Project description:Meiosis was compared in msh5-22 and wild type strains of C. cinerea at 6 time points spanning the meiotic timecourse. Abstract: The basidiomycete Coprinopsis cinerea is well-suited to studies of meiosis because meiosis progresses synchronously in ten million cells within each mushroom cap. Approximately 20% of C. cinerea genes exhibit changing expression during meiosis, but meiosis and mushroom development happen concurrently so differentially expressed genes might not be directly involved in meiotic processes. Using microarrays, we examined global gene expression across a meiotic time course in two mutants in which meiosis arrests but mushrooms develop normally. Genes differentially expressed in the mutants compared to wild type are likely to be involved in meiosis and sporulation as opposed to mushroom development. In rad50-1, which arrests in late prophase, RNA abundance for a group of early meiotic genes remains high, while the expression of a group of late meiotic genes is never induced. In contrast, in msh5-22 (which fails to undergo pre-meiotic DNA replication), both early and late meiotic genes are underexpressed relative to wild type at late meiotic time points as the cells die. Genes that are differentially expressed in both mutants are particularly strong candidates for playing roles in meiosis and sporulation.
Project description:Meiosis was compared in rad50-1 and wild type strains of C. cinerea at 6 time points spanning the meiotic timecourse. Abstract: The basidiomycete Coprinopsis cinerea is well-suited to studies of meiosis because meiosis progresses synchronously in ten million cells within each mushroom cap. Approximately 20% of C. cinerea genes exhibit changing expression during meiosis, but meiosis and mushroom development happen concurrently so differentially expressed genes might not be directly involved in meiotic processes. Using microarrays, we examined global gene expression across a meiotic time course in two mutants in which meiosis arrests but mushrooms develop normally. Genes differentially expressed in the mutants compared to wild type are likely to be involved in meiosis and sporulation as opposed to mushroom development. In rad50-1, which arrests in late prophase, RNA abundance for a group of early meiotic genes remains high, while the expression of a group of late meiotic genes is never induced. In contrast, in msh5-22 (which fails to undergo pre-meiotic DNA replication), both early and late meiotic genes are underexpressed relative to wild type at late meiotic time points as the cells die. Genes that are differentially expressed in both mutants are particularly strong candidates for playing roles in meiosis and sporulation.
Project description:The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including the animals, embryophytes, red and brown algae and fungi. Despite being a key step towards the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall (FCW) remodeling, targeted protein degradation, signal transduction, adhesion and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, with from which many convergently expandedwere identified in multicellular plants and/or animals too, assuming convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides a novel entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
Project description:Coprinopsis cinerea exhibits synchronised meiosis in the gill tissue of the fungus, which is 75% meiotic. The mushroom develops from a dikaryon, which contains two separate nuclei. These nucleifuse in the basidia (karyogamy). After karyogamy, the nuclei enter an extended meiotic prophase, in which pahcytene occurs at 6 hours post karyogamy (K+6). The tetrads produced by the second meiotic division are present 12 hours after karyogamy (K+12). To examine a comprehensive timecourse of meiosis in this organism, we took samples over a 15-hour period, 3 hours apart: K-3, K, K+3, K+6, K+9, K+12. Keywords: time course
Project description:Coprinopsis cinerea exhibits synchronised meiosis in the gill tissue of the fungus, which is 75% meiotic. The mushroom develops from a dikaryon, which contains two separate nuclei. These nucleifuse in the basidia (karyogamy). After karyogamy, the nuclei enter an extended meiotic prophase, in which pahcytene occurs at 6 hours post karyogamy (K+6). The tetrads produced by the second meiotic division are present 12 hours after karyogamy (K+12). To examine a comprehensive timecourse of meiosis in this organism, we took samples over a 15-hour period, 3 hours apart: K-3, K, K+3, K+6, K+9, K+12. Keywords: time course Four biological replicate samples of each timepoint were taken. Labelled cDNA was hybridized to arrays in a 2 channel reaction. The reference sample was a mixture of timepoint samples.
Project description:Mushroom-forming fungi (Agaricomycetes) are emerging as pivotal players in several fields, as drivers of nutrient cycling, sources of novel applications, or as the group that includes the most morphologically complex fungi. Genomic data for Agaricomycetes are accumulating at a steady pace, however, this is not paralleled by improvements in the quality of genome sequence and associated functional gene annotations, which leaves gene function notoriously poorly understood in comparison with other fungi and model eukaryotes. We set out to improve our functional understanding of the model mushroom Coprinopsis cinerea by integrating a new, chromosome-level assembly with high-quality gene predictions and functional information derived from gene-expression profiling data across 67 developmental, stress, and light conditions. The new annotation includes 5′- and 3′-untranslated regions (UTRs), polyadenylation sites (PAS), upstream ORFs (uORFs), splicing isoforms, conserved sequence motifs (e.g., TATA and Kozak boxes) and microexons. We found that alternative polyadenylation is widespread in C. cinerea, but that it is not specifically regulated across the various conditions used here. Transcriptome profiling allowed us to delineate core gene sets corresponding to carbon starvation, light-response, and hyphal differentiation, and uncover new aspects of the light-regulated phases of life cycle. As a result, the genome of C. cinerea has now become the most comprehensively annotated genome among mushroom-forming fungi, which will contribute to multiple rapidly expanding fields, including research on their life history, light and stress responses, as well as multicellular development.
Project description:We have recently shown that the coprophilous model mushroom Coprinopsis cinerea transcribes a broad array of genes encoding defense proteins in the vegetative mycelium and fruiting bodies that target bacterial competitors and animal predators challenging the respective tissues of this fungus. In addition, we have demonstrated in previous work that two nematotoxic defense proteins from Coprinopsis, CGL1 and CGL2, were induced in vegetative mycelium challenged with the predatory nematode Aphelenchus avenae; however, the specificity and broadness of this response remained unclear. In order to resolve these issues, we sequenced the poly(A)-positive transcriptome of vegetative mycelium of C. cinerea confronted with nematode predation, hyphal mechanical damage or bacterial co-culture.
Project description:Large scale assessment of the transcriptomes of the vegetative mycelium and primordium will facilitate the generation of a more comprehensive picture of the fruiting process in basidiomycetes. We coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes (URGs) among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. We evaluated the expression of >3,000 genes in the two respective growth stages and demonstrated that almost one-third of these genes were preferentially expressed in either stage, which implicated a significant transcriptomic switch during fruiting body initiation. We annotated >34,000 and >45,000 transcription start sites (TSSs) in the transcriptomes of Myc and S1-Pri respectively. We identified a wealth of potential URGs related to early fruiting events, although their functions and roles are not exactly known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea.