Project description:The National Institute on Alcohol Abuse and Alcoholism has estimated that approximately 14 million people in the United States suffer from alcoholism. Alcohol sensitivity, the development of tolerance to alcohol and susceptibility to addiction vary in the population. Whereas environmental factors, such as stress and social experience, contribute to individual variation in sensitivity to chronic alcohol consumption, genetic factors have also been implicated. However, genetic polymorphisms that predispose to alcoholism remain largely unknown due to extensive genetic and environmental variation in human populations. Drosophila, however, allows studies on genetically identical individuals in controlled environments. Although addiction to alcohol has not been demonstrated in Drosophila, flies show responses to alcohol exposure that resemble human intoxication, including hyperactivity, loss of postural control, sedation, and exposure-dependent development of tolerance. We assessed whole-genome transcriptional responses following alcohol exposure and demonstrate immediate down-regulation of olfactory sensitivity and, concomitant with development of tolerance, altered transcription of enzymes associated with fatty acid biosynthesis. Our results identify key enzymes in conserved metabolic pathways that may contribute to human alcohol sensitivity. Keywords: Drosophila, model system, alcohol sensitivity, tolerance
Project description:This experiment was intended to determine if topical exposure to ethanol led to significant changes in gene expression in adult Drosophila melanogaster. It was determined that topical exposure to ethanol did not lead to a strong differential expression of genes in Drosophila after 4 hours. Keywords: Ethanol response, stress response
Project description:We report the transcriptional profiles from individual Drosophila melanogaster (whole bodies or dissected brains) to Entomophthora muscae at 24 time points following fungal exposure. In whole fruit fly bodies, a significant immune response is observed following exposure to the fungus. In brains, few differences are consistently observed between infected and uninfected animals.
Project description:<p>Viral studies of Drosophila melanogaster typically involve virus injection with a small needle, causing post-injury a wounding/wound healing response, in addition to the effects of viral infection. However, the metabolic response to the needle injury is understudied, and many viral investigations neglect potential effects of this response. Furthermore, the wMel strain of the endosymbiont bacterium Wolbachia pipientis provides anti-viral protection in Drosophila. Here we used NMR-based metabolomics to characterise the acute wounding response in Drosophila and the relationship between wound healing and the Wolbachia strain wMel. The most notable response to wounding was found on the initial day of injury and lessened with time in both uninfected and Wolbachia infected flies. Metabolic changes in injured flies revealed evidence of inflammation, Warburg-like metabolism and the melanisation immune response as a response to wounding. In addition, at five days post injury Wolbachia infected injured flies were metabolically more similar to the uninjured flies than uninfected injured flies were at the same time point, indicating a positive interaction between Wolbachia infection and wound healing. This study is the first metabolomic characterisation of the wound response in Drosophila and its findings are crucial to the metabolic interpretation of viral experiments in Drosophila in both past and future studies.</p>
Project description:Proteomic Analysis (MS/MS) of Drosophila melanogaster mtx2 (Ortholog of CG8004) Heterozygous versus Homozygous Mutants at 2 Days Post-Pupa Formation