Project description:Accuracy of sepsis prediction was obtained using cross-validation of gene expression data from 12 human spleen samples and from 16 mouse spleen samples. For blood studies, classifiers were constructed using data from a training data set of 26 microarrays. The error rate of the classifiers was estimated on seven de-identified microarrays, and then on a subsequent cross-validation for all 33 blood microarrays. Estimates of classification accuracy of sepsis in human spleen were 67.1%; in mouse spleen, 96%; and in mouse blood, 94.4% (all estimates were based on nested cross-validation). Lists of genes with substantial changes in expression between study and control groups were used to identify nine mouse common inflammatory response genes, six of which were mapped into a single pathway using contemporary pathway analysis tools. Keywords: genomics, diagnosis, microarray, calprotectin
Project description:BACKGROUND:Based on recent in vitro data, we tested the hypothesis that microarray expression profiles can be used to diagnose sepsis, distinguishing in vivo between sterile and infectious causes of systemic inflammation. STUDY DESIGN:Exploratory studies were conducted using spleens from septic patients and from mice with abdominal sepsis. Seven patients with sepsis after injury were identified retrospectively and compared with six injured patients. C57BL/6 male mice were subjected to cecal ligation and puncture, or to IP lipopolysaccharide. Control mice had sham laparotomy or injection of IP saline, respectively. A sepsis classification model was created and tested on blood samples from septic mice. RESULTS:Accuracy of sepsis prediction was obtained using cross-validation of gene expression data from 12 human spleen samples and from 16 mouse spleen samples. For blood studies, classifiers were constructed using data from a training data set of 26 microarrays. The error rate of the classifiers was estimated on seven de-identified microarrays, and then on a subsequent cross-validation for all 33 blood microarrays. Estimates of classification accuracy of sepsis in human spleen were 67.1%; in mouse spleen, 96%; and in mouse blood, 94.4% (all estimates were based on nested cross-validation). Lists of genes with substantial changes in expression between study and control groups were used to identify nine mouse common inflammatory response genes, six of which were mapped into a single pathway using contemporary pathway analysis tools. CONCLUSIONS:Sepsis induces changes in mouse leukocyte gene expression that can be used to diagnose sepsis apart from systemic inflammation.
Project description:Background The heterogeneity of sepsis represents a major problem for the development of personalized sepsis therapies. Thus, sepsis subtyping emerged as an important tool to approach this problem, but little progress was made due to insufficient molecular insights. Modern proteomics techniques allow the identification of subtypes and enable molecular and mechanistical insights. Here, we analyzed a prospective multi-center sepsis cohort using plasma proteomics to describe and characterize sepsis plasma proteome subtypes. Methods Plasma samples from 333 patients collected at days 1 and 4 of sepsis were analyzed using liquid-chromatography coupled to tandem mass spectrometry. Plasma proteome subtypes were identified using K-means clustering and were characterized based on clinical routine data, cytokine measurements and proteomics data. A random forest machine learning (ML) classifier was generated to enable the assignment of patients to the subtypes in future. Results Four subtypes with different sepsis severity were identified. Cluster 0 represented the most severe sepsis with 100 % mortality. Cluster 1, 2 and 3 showed a gradual decrease of the median SOFA score, which was reflected by clinical data and cytokine measurements. On the proteome level, the subtypes were characterized by distinct molecular features. We found an alternating immune response with cluster 1 showing prominent activation of the adaptive immune system as indicated by elevated levels of immunoglobulins (Ig) that were verified using orthogonal measurements. Cluster 2 was characterized by acute inflammation and the lowest Ig levels. Cluster 3 represented the sepsis proteome baseline of the investigated cohort. We generated a ML classifier and optimized it for a minimum number of proteins that could realistically be implemented into routine diagnostics. The final model was based on 10 proteins and Ig quantities and allowed the assignment of patients to clusters 1, 2 and 3 with high confidence. Conclusion The identified plasma proteome subtypes provide insights into immune response and disease mechanisms and allow conclusions on appropriate therapeutic measures. Thus, they represent a step forward in the development of targeted therapies and personalized medicine in sepsis.
Project description:Sepsis remains a diagnostic challenge with no gold-standard test. Urine provides a readily available, non-invasive biofluid with significant diagnostic potential. Urinary gene expression has been previously used for diagnosis and prognosis of urological malignancies and transplant allograft rejections, but remains unutilized for sepsis diagnosis. In this study, the authors use urinary gene expression profiles to both diagnose sepsis and characterize its pathophysiology. By using differential expression augmented with machine learning ensembles, the authors identify a collection of cellular mRNA from 239 genes in patient urine which show exceptional power in classifying septic patients from those with chronic systemic disease in both internal and independent external validation cohorts. Functional analysis indexes the disrupted biological pathways in early sepsis and additionally reveals key molecular networks driving its pathogenesis. This study serves a pioneering step towards expanding the clinical potential of urinary molecular profiles for application to systemic diseases.
Project description:Sepsis remains a diagnostic challenge with no gold-standard test. Urine provides a readily available, non-invasive biofluid with significant diagnostic potential. Urinary gene expression has been previously used for diagnosis and prognosis of urological malignancies and transplant allograft rejections, but remains unutilized for sepsis diagnosis. In this study, the authors use urinary gene expression profiles to both diagnose sepsis and characterize its pathophysiology. By using differential expression augmented with machine learning ensembles, the authors identify a collection of cellular mRNA from 239 genes in patient urine which show exceptional power in classifying septic patients from those with chronic systemic disease in both internal and independent external validation cohorts. Functional analysis indexes the disrupted biological pathways in early sepsis and additionally reveals key molecular networks driving its pathogenesis. This study serves a pioneering step towards expanding the clinical potential of urinary molecular profiles for application to systemic diseases.
Project description:The early, accurate diagnosis and risk stratification of sepsis remains an important challenge in the critically ill. Since traditional biomarker strategies have not yielded a gold standard marker for sepsis, focus is shifting towards novel strategies that improve assessment capabilities. The combination of technological advancements and information generated through the human genome project positions systems biology at the forefront of biomarker discovery. While previously available, developments in the technologies focusing on DNA, gene expression, gene regulatory mechanisms, protein and metabolite discovery have made these tools more feasible to implement and less costly, and they have taken on an enhanced capacity such that they are ripe for utilization as tools to advance our knowledge and clinical research. Medicine is in a genome-level era that can leverage the assessment of thousands of molecular signals beyond simply measuring selected circulating proteins. Genomics is the study of the entire complement of genetic material of an individual. Epigenetics is the regulation of gene activity by reversible modifications of the DNA. Transcriptomics is the quantification of the relative levels of messenger RNA for a large number of genes in specific cells or tissues to measure differences in the expression levels of different genes, and the utilization of patterns of differential gene expression to characterize different biological states of a tissue. Proteomics is the large-scale study of proteins. Metabolomics is the study of the small molecule profiles that are the terminal downstream products of the genome and consists of the total complement of all low-molecular-weight molecules that cellular processes leave behind. Taken together, these individual fields of study may be linked during a systems biology approach. There remains a valuable opportunity to deploy these technologies further in human research. The techniques described in this paper not only have the potential to increase the spectrum of diagnostic and prognostic biomarkers in sepsis, but they may also enable the discovery of new disease pathways. This may in turn lead us to improved therapeutic targets. The objective of this paper is to provide an overview and basic framework for clinicians and clinical researchers to better understand the 'omics technologies' to enhance further use of these valuable tools.
Project description:Background: Sepsis involves aberrant immune responses to infection, but the exact nature of this immune dysfunction remains poorly defined. Bacterial endotoxins like lipopolysaccharide (LPS) are potent inducers of inflammation, which has been associated with the pathophysiology of sepsis, but repeated exposure can also induce a suppressive effect known as endotoxin tolerance or cellular reprogramming. It has been proposed that endotoxin tolerance might be associated with the immunosuppressive state that was primarily observed during late-stage sepsis. However, this relationship remains poorly characterised. Here we clarify the underlying mechanisms and timing of immune dysfunction in sepsis. Methods: We defined a gene expression signature characteristic of endotoxin tolerance. Gene-set test approaches were used to correlate this signature with early sepsis, both newly and retrospectively analysing microarrays from 593 patients in 11 cohorts. Then we recruited a unique cohort of possible sepsis patients at first clinical presentation in an independent blinded controlled observational study to determine whether this signature was associated with the development of confirmed sepsis and organ dysfunction. Findings: All sepsis patients presented an expression profile strongly associated with the endotoxin tolerance signature (p < 0.01; AUC 96.1%). Importantly, this signature further differentiated between suspected sepsis patients who did, or did not, go on to develop confirmed sepsis, and predicted the development of organ dysfunction. Interpretation: Our data support an updated model of sepsis pathogenesis in which endotoxin tolerance-mediated immune dysfunction (cellular reprogramming) is present throughout the clinical course of disease and related to disease severity. Thus endotoxin tolerance might offer new insights guiding the development of new therapies and diagnostics for early sepsis. For the RNA-Seq study reported here, 73 patients were recruited with deferred consent at the time of first examination in an emergency ward based on the opinion of physicians that there was a potential for the patient's condition to develop into sepsis. These were retrospectively divided into groups based on clinical features and compared to 11 non-urgent surgical controls.
Project description:Introduction: Sepsis is a complex immunological response to infection characterized by early hyperinflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on SIRS differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing. Methods: This was a multi-centre, prospective clinical trial conducted across 4 tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement criteria and had clinical evidence of systemic infection based on microbiology diagnoses (n=27). Participants in the post-surgical (PS) group were recruited pre-operatively and blood samples collected within 24 hours following surgery (n=38). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n=20). Each participant had minimally 5ml of PAXgene blood collected for leucocyte RNA isolation and gene expression analyses. Affymetrix array and multiplex tandem (MT)-PCR studies were conducted to evaluate transcriptional profiles in circulating white blood cells applying a set of 42 molecular markers that had been identified a priori. A LogitBoost algorithm was used to create a machine learning diagnostic rule to predict sepsis outcomes. Results: Based on preliminary microarray analyses comparing HC and sepsis groups. A panel of 42-gene expression markers were identified that represented key innate and adaptive immune function, cell cycling, WBC differentiation, extracellular remodelling and immune modulation pathways. Comparisons against GEO data confirmed the definitive separation of the sepsis cohort. Quantitative PCR results suggest the capacity for this test to differentiate severe systemic inflammation from HC is 92%. AUC ROC curve findings demonstrated sepsis prediction within a mixed inflammatory population, was between 86 - 92%. Conclusions: This novel molecular biomarker test has a clinically relevant sensitivity and specificity profile, and has the capacity for early detection of sepsis via the monitoring of critical care patients. GEO Note: Data made available represents the preliminary microarray investigation performed on Human U133 Plus 2.0 GeneChips (Affymetrix), assaying 41 patient samples (Sepsis n=10, Post-Surgical n=11, Control n=20). This was a multi-centre, prospective clinical trial conducted across 4 tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement criteria and had clinical evidence of systemic infection based on microbiology diagnoses (n=27). Participants in the post-surgical (PS) group were recruited pre-operatively and blood samples collected within 24 hours following surgery (n=38). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n=20). Each participant had minimally 5ml of PAXgene blood collected for leucocyte RNA isolation and gene expression analyses. The GEO data represents the preliminary microarray investigation performed on Human U133 Plus 2.0 GeneChips (Affymetrix), assaying 41 patient samples (Sepsis n=10, Post-Surgical n=11, Control n=20).