Project description:To study the regulation of candidate genes from our study in human cells, we analyzed CD4+ T cells from blood and CSF of MA patients and age and sex matched idiopathic intracranial hypertension controls We analyzed 40845 cells in control blood, 807 cells in control CSF, 29749 cells in MS blood and 15768 cells in MS CSF
Project description:Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft versus host disease (GVHD). CD4+ T cells that produce GM-CSF have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if there exists a unique CD4+ GM-CSF+ subset that differs from other defined T helper (TH) subtypes. Using single cell RNA sequencing analysis, we identified two CD4+ GM-CSF+ T cell populations that arose during GVHD and were distinguishable by the presence or absence of IFN-γ co-expression. CD4+ GM-CSF+ IFN-γ- T cells which emerged preferentially in the colon had a distinct transcriptional profile, employed unique gene regulatory networks, and possessed a non-overlapping TCR repertoire when compared to CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T cell populations in the colon. Functionally, this CD4+ GM-CSF+ T cell population contributed to pathological damage in the GI tract which was critically dependent upon signaling through the IL-7 receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic TH GM-CSF+ subset that mediates immunopathology.