Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism.
Project description:Cruciferous vegetables and their derived compounds, such as glucosinolates, have demonstrated anti-inflammatory properties in animal models. In this study, broccoli-supplemented diet induced changes in the gut microbiome and its role in host and bacterial gene expression were examined in mice following consumption of the Total Western Diet (TWD), which is based on NHANES data and represents the composition of a typical American diet. C57BL/6 male mice were fed a TWD for six weeks followed by a supplementation of 0, 0.5, 1 or 2.5% broccoli powder for three weeks. Microbial communities from cecal contents were taxonomically profiled using 16S and metagenomics sequencing, and metatranscriptomics was used to assess functionality of bacterial species. Cecum tissues were also analyzed for host transcriptomics.
Project description:Cruciferous vegetables and their derived compounds, such as glucosinolates, have demonstrated anti-inflammatory properties in animal models. In this study, broccoli-supplemented diet induced changes in the gut microbiome and its role in host and bacterial gene expression were examined in mice following consumption of the Total Western Diet (TWD), which is based on NHANES data and represents the composition of a typical American diet. C57BL/6 male mice were fed a TWD for six weeks followed by a supplementation of 0, 0.5, 1 or 2.5% broccoli powder for three weeks. Microbial communities from cecal contents were taxonomically profiled using 16S and metagenomics sequencing, and metatranscriptomics was used to assess functionality of bacterial species. Cecum tissues were also analyzed for host transcriptomics.
2025-06-30 | GSE280358 | GEO
Project description:gut microbiota in Mongolian horse and Guizhou horse