Project description:Sex condition has been demonstrated to alter meat quality and sex is a major factor that affects the fatty acid composition of lipids of carcass dissectible or intramuscular depot fats. But the possible genetic molecular mechanism of gender causing meat quality differences is not well defined. Qinchuan cattle, Qinghai yak and Guangxi buffalo are three typical indigenous species of cattle in China. Obivious differences of meat quality exist among the three species of cattle. Few studies have been conducted to elucidate the muscle tissue expression of genes involved in pathways and mechanisms leading to meat quality differences beyond the phenotype properties of beef. Bovine Genome Arrays were used to construct muscle expression profiles of the longuissimus dorsi from Qinchuan cattle at 36 months and screen differentially expressed genes in the longuissimus dorsi muscle tissues among different genders of Qinchuan cattle, between Qinchuan cattle and Qinghai yak, and between Qinchuan cattle and Guangxi buffalo.
Project description:Shigui Ruan. Modeling the transmission dynamics and control of rabies in China. Mathematical Biosciences 286 (2017).
Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction-diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7.
2024-09-02 | BIOMD0000000726 | BioModels
Project description:Amplicon-seq target 16S, ITS, and Protist in Guangxi, China
Project description:Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) strains and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence data. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB (HR-MTB), 7 were resistant only to one antibiotic (3 were resistant only to ethambutol and 3 isolate to streptomycin while one isolate showed resistance to fluoroquinolones), 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB (pre-XDR). This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of TB infection.
Project description:Talaromyces marneffei is the third most common infectious pathogen in AIDS patients and leads to the highest death rate in Guangxi, China. The lack of reliable biomarkers is one of the major obstacles in current clinical diagnosis, which largely contributes to this high mortality. Here, we present a study that aimed at identifying diagnostic biomarker candidates through genome-wide prediction and functional annotation of Talaromyces marneffei secreted proteins. A total of 584 secreted proteins then emerged, including 382 classical and 202 non-classical ones. Among them, 87 newly obtained functional annotations in this study. The annotated proteins were further evaluated by combining RNA profiling and homology comparison. Three proteins were ultimately highlighted as biomarker candidates with robust expression and remarkable specificity. The predicted phosphoinositide phospholipase C and the galactomannoprotein were suggested playing an interactive immune game though metabolism of arachidonic acid. And therefore, they hold promises in developing new tools for clinical diagnosis of Talaromyces marneffei, possibly also serve as molecular targets of future therapy.