Project description:To determine secreted proteins that involved in adaptation of nutrient sources and response to nutrient stresses, we analyzed transcriptomes of Pochonia chlamydosporia strain 170 under three different nutrient conditions, CD (nutrient rich medium) that was predicted to repress parasitism, MM (nutrient-poor liquid minimal medium) that was predicted de-repress genes associated with parasitism, and MM-eggs(minimal medium with root-knot nematode eggs) that was prepared to induce parasitism.
Project description:Pochonia chlamydosporia (Goddard) Zare & Gams (Ascomycota, Sordariomycetes, Hypocreales, Pochoniaceae, Pochonia) is a nematophagous fungus with significant potential as a biocontrol agent against animal-parasitic nematode. However, the molecular and cellular mechanisms underlying its infection process remain poorly understood. This study aims to provide a comprehensive investigation of P. chlamydosporia infection dynamics in Parascaris equorum eggs using both microscopic and proteomic approaches. The infection was monitored at three distinct stages (early, middle, and late), with corresponding ultrastructural and molecular changes observed. Microscopic analysis using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and light microscopy (LM) revealed the progressive invasion of P. chlamydosporia into nematode eggs. These observations provided detailed insights into the morphological changes in both fungal structures and nematode eggs, highlighting key infection stages such as fungal attachment, germination, and egg degradation. Furthermore, the observations confirmed the stages of fungal colonization, emphasizing the dynamic host-pathogen interaction at the macroscopic level. To complement these observations, a 4D-DIA-based quantitative proteomics approach was employed to analyze the exoproteomic changes in P. chlamydosporia during infection. A total of 410 differentially expressed proteins (DEPs) were identified across the three infection stages, with 313 proteins upregulated and 403 proteins downregulated. Gene Ontology (GO) enrichment analysis revealed that these DEPs are involved in critical biological processes, including cellular stress response, proteolysis, metabalic process, and hydrolase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further identified key infection-associated pathways, such as signal transduction, cell wall biosynthesis, energy metabolism, and host-pathogen interactions. These findings suggest that P. chlamydosporia employs a highly coordinated molecular strategy to adapt to and exploit its host. Quantitative PCR (qPCR) validation of key genes involved in signal transduction and immune evasion mechanisms further supported the molecular basis of P. chlamydosporia's parasitic behavior. These findings contribute to our understanding of fungal-nematode interactions and lay a solid foundation for the development of P. chlamydosporia as a sustainable tool for integrated pest management.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Whole exome sequencing of 5 HCLc tumor-germline pairs. Genomic DNA from HCLc tumor cells and T-cells for germline was used. Whole exome enrichment was performed with either Agilent SureSelect (50Mb, samples S3G/T, S5G/T, S9G/T) or Roche Nimblegen (44.1Mb, samples S4G/T and S6G/T). The resulting exome libraries were sequenced on the Illumina HiSeq platform with paired-end 100bp reads to an average depth of 120-134x. Bam files were generated using NovoalignMPI (v3.0) to align the raw fastq files to the reference genome sequence (hg19) and picard tools (v1.34) to flag duplicate reads (optical or pcr), unmapped reads, reads mapping to more than one location, and reads failing vendor QC.
Project description:To identify more targets in soybean, particularly specific targets of Cd-stress-responsive miRNAs, high-throughput degradome sequencing was used. In total, we obtained 8913111 raw reads from the library which was constructed from a mixture of four samples (HX3-CK, HX3-Cd-treatment, ZH24-CK and ZH24-Cd-treatment). After removing the reads without the CAGAG adaptor, 5430126 unique raw-reads were obtained. The unique sequences were aligned to the G. max genome database, and 6516276 reads were mapped to the genome. The mapped reads from the libraries represented 51481 annotated G. max genes.