Project description:Intracranial metastases in prostate cancer are uncommon but clinically aggressive. A detailed molecular characterization of prostate cancer intracranial metastases would improve our understanding of their pathogenesis and the search for new treatment strategies. We evaluated the clinical and molecular characteristics of 36 patients with metastatic prostate cancer to either the dura or brain parenchyma. We performed whole genome sequencing (WGS) of 10 intracranial prostate cancer metastases, as well as WGS of primary prostate tumors from men who later developed metastatic disease (n = 6) and nonbrain prostate cancer metastases (n = 36). This first whole genome sequencing study of prostate intracranial metastases led to several new insights. First, there was a higher diversity of complex structural alterations in prostate cancer intracranial metastases compared to primary tumor tissues. Chromothripsis and chromoplexy events seemed to dominate, yet there were few enrichments of specific categories of structural variants compared with non-brain metastases. Second, aberrations involving the AR gene, including AR enhancer gain were observed in 7/10 (70%) of intracranial metastases, as well as recurrent loss of function aberrations involving TP53 in 8/10 (80%), RB1 in 2/10 (20%), BRCA2 in 2/10 (20%), and activation of the PI3K/AKT/PTEN pathway in 8/10 (80%). These alterations were frequently present in tumor tissues from other sites of disease obtained concurrently or sequentially from the same individuals. Third, clonality analysis points to genomic factors and evolutionary bottlenecks that contribute to metastatic spread in patients with prostate cancer. These results describe the aggressive molecular features underlying intracranial metastasis that may inform future diagnostic and treatment approaches.
Project description:GPCR structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches excel at probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, we establish a new structural MS approach that would help address ligand or transducer-induced conformational transition and plasticity, a long-standing challenge for GPCR biology and rational drug design.
Project description:Genome rearrangements, especially amplifications and deletions, have regularly been observed as responses to sustained application of the same strong selective pressure in microbial populations growing in continuous culture. We studied eight strains of budding yeast (Saccharomyces cerevisiae) isolated after 100–500 generations of growth in glucose-limited chemostats. Changes in DNA copy number were assessed at single-gene resolution by using DNA microarray-based comparative genomic hybridization. Six of these evolved strains were aneuploid as the result of gross chromosomal rearrangements. Most of the aneuploid regions were the result of translocations, including three instances of a shared breakpoint on chromosome 14 immediately adjacent to CIT1, which encodes the citrate synthase that performs a key regulated step in the tricarboxylic acid cycle. Three strains had amplifications in a region of chromosome 4 that includes the high-affinity hexose transporters; one of these also had the aforementioned chromosome 14 break. Three strains had extensive overlapping deletions of the right arm of chromosome 15. Further analysis showed that each of these genome rearrangements was bounded by transposon-related sequences at the breakpoints. The observation of repeated, independent, but nevertheless very similar, chromosomal rearrangements in response to persistent selection of growing cells parallels the genome rearrangements that characteristically accompany tumor progression. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Cancer genomes are characterized by accumulation of small-scale somatic mutations as well as large-scale chromosomal deletions, amplifications, and complex structural rearrangements. This characteristic is at least partially dependent on the ability of cancer cells to undergo recurrent chromosome breakage. In order to address to what extent chromosomal structural rearrangement breakpoints correlate with recurrent DNA double strand breaks (DSBs), we simultaneously mapped chromosome structural variation breakpoints by whole genome DNA-seq and spontaneous DSB formation by Break-seq in the breast cancer cell line MCF-7 and a non-cancer control cell line MCF-10A. We identified concurrent DSBs and structural variation breakpoints almost exclusively in the pericentromeric region of chromosome 16q in MCF-7 cells. We fine-tuned the identification of copy number variation breakpoints on 16q. In addition, we detected recurrent DSBs that occurred in both MCF-7 and MCF-10A. We propose a model for DSB-driven chromosome rearrangements that led to the translocation of 16q, likely with 10q, and the eventual 16q loss that does not involve the pericentromere of 16q. We present evidence from RNA-seq data that select genes, including SHCBP1, ORC6 and MYLK3, which are immediately downstream from the 16q pericentromere show heightened expression in MCF-7 cell line compared to the control. Data published by The Cancer Genome Atlas showed that all three genes have increased expression in breast tumor samples. We suggest that these genes are potential oncogenes for breast cancer progression. The search for tumor suppressor loss that accompanies the 16q loss ought to be augmented by the identification of potential oncogenes that gained expression during chromosomal rearrangements.
Project description:Cancer genomes are characterized by accumulation of small-scale somatic mutations as well as large-scale chromosomal deletions, amplifications, and complex structural rearrangements. This characteristic is at least partially dependent on the ability of cancer cells to undergo recurrent chromosome breakage. In order to address to what extent chromosomal structural rearrangement breakpoints correlate with recurrent DNA double strand breaks (DSBs), we simultaneously mapped chromosome structural variation breakpoints by whole genome DNA-seq and spontaneous DSB formation by Break-seq in the breast cancer cell line MCF-7 and a non-cancer control cell line MCF-10A. We identified concurrent DSBs and structural variation breakpoints almost exclusively in the pericentromeric region of chromosome 16q in MCF-7 cells. We fine-tuned the identification of copy number variation breakpoints on 16q. In addition, we detected recurrent DSBs that occurred in both MCF-7 and MCF-10A. We propose a model for DSB-driven chromosome rearrangements that led to the translocation of 16q, likely with 10q, and the eventual 16q loss that does not involve the pericentromere of 16q. We present evidence from RNA-seq data that select genes, including SHCBP1, ORC6 and MYLK3, which are immediately downstream from the 16q pericentromere show heightened expression in MCF-7 cell line compared to the control. Data published by The Cancer Genome Atlas showed that all three genes have increased expression in breast tumor samples. We suggest that these genes are potential oncogenes for breast cancer progression. The search for tumor suppressor loss that accompanies the 16q loss ought to be augmented by the identification of potential oncogenes that gained expression during chromosomal rearrangements.
Project description:Cancer genomes are characterized by accumulation of small-scale somatic mutations as well as large-scale chromosomal deletions, amplifications, and complex structural rearrangements. This characteristic is at least partially dependent on the ability of cancer cells to undergo recurrent chromosome breakage. In order to address to what extent chromosomal structural rearrangement breakpoints correlate with recurrent DNA double strand breaks (DSBs), we simultaneously mapped chromosome structural variation breakpoints by whole genome DNA-seq and spontaneous DSB formation by Break-seq in the breast cancer cell line MCF-7 and a non-cancer control cell line MCF-10A. We identified concurrent DSBs and structural variation breakpoints almost exclusively in the pericentromeric region of chromosome 16q in MCF-7 cells. We fine-tuned the identification of copy number variation breakpoints on 16q. In addition, we detected recurrent DSBs that occurred in both MCF-7 and MCF-10A. We propose a model for DSB-driven chromosome rearrangements that led to the translocation of 16q, likely with 10q, and the eventual 16q loss that does not involve the pericentromere of 16q. We present evidence from RNA-seq data that select genes, including SHCBP1, ORC6 and MYLK3, which are immediately downstream from the 16q pericentromere show heightened expression in MCF-7 cell line compared to the control. Data published by The Cancer Genome Atlas showed that all three genes have increased expression in breast tumor samples. We suggest that these genes are potential oncogenes for breast cancer progression. The search for tumor suppressor loss that accompanies the 16q loss ought to be augmented by the identification of potential oncogenes that gained expression during chromosomal rearrangements.
Project description:Genome rearrangements, especially amplifications and deletions, have regularly been observed as responses to sustained application of the same strong selective pressure in microbial populations growing in continuous culture. We studied eight strains of budding yeast (Saccharomyces cerevisiae) isolated after 100–500 generations of growth in glucose-limited chemostats. Changes in DNA copy number were assessed at single-gene resolution by using DNA microarray-based comparative genomic hybridization. Six of these evolved strains were aneuploid as the result of gross chromosomal rearrangements. Most of the aneuploid regions were the result of translocations, including three instances of a shared breakpoint on chromosome 14 immediately adjacent to CIT1, which encodes the citrate synthase that performs a key regulated step in the tricarboxylic acid cycle. Three strains had amplifications in a region of chromosome 4 that includes the high-affinity hexose transporters; one of these also had the aforementioned chromosome 14 break. Three strains had extensive overlapping deletions of the right arm of chromosome 15. Further analysis showed that each of these genome rearrangements was bounded by transposon-related sequences at the breakpoints. The observation of repeated, independent, but nevertheless very similar, chromosomal rearrangements in response to persistent selection of growing cells parallels the genome rearrangements that characteristically accompany tumor progression. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:This study investigated how the depletion of natural killer (NK) cells in mice treated with a combined PD-1/CTLA-4 blockade affects the molecular profiles of intracranial tumors in a two-site B16-OVA melanoma brain metastases model. This model contains concomitant intracranial and extracranial tumors, to mimic the presence of extracranial metastases in melanoma patients with brain metastases, and intracranial responses to the combined PD-1/CTLA-4 blockade that are observed in the clinic can be reproduced in this model.
Project description:Gene expression information is useful in prioritizing candidate genes in linkage intervals. The data can also identify pathways involved in the pathophysiology of disease. We used microarrays to identify which genes are expressed in either intracranial arteries (control) or in intracranial aneurysms (case), and can therefore contribute to the disease phenotypes. We used microarrays to identify the pathway membership of expressed genes and the overrepresentation of pathways with expressed genes in the known linkage intervals for intracranial aneurysms. Keywords: Characterization of expression in both diseased and non-diseased intracranial arteries.