Project description:High-throughput sequencing of life stages and tissues of the flatworm Schistosoma mansoni to be used for further gene editing, gene finding and transcriptome analysis
Project description:A Scalable Epitope Tagging Approach for High Throughput ChIP-seq Analysis ChIP-seq comparison between CRISPR editing cells using epitope antibody and non-editing cells using endogeneous TF antibody
Project description:Because of their smallness, the recently developed CRISPR-Cas12f nucleases can be effectively packaged into adeno-associated viruses for gene therapy. However, a systematic evaluation of the editing outcomes of CRISPR-Cas12f is lacking. In this study, we apply a high-throughput sequencing method to comprehensively assess the editing efficiency, specificity, and safety of four Cas12f proteins in parallel with that of Cas9 and two Cas12a proteins at multiple genomic sites. Cas12f nucleases achieve robust cleavage at most of the tested sites and mainly produce deletional fragments. In contrast, Cas9 and Cas12a show relatively higher editing efficiency at the vast majority of the tested sites. However, the off-target hotspots identified in the Cas9- and Cas12a-edited cells are negligibly detected in the Cas12f-edited cells. Moreover, compared to Cas9 and Cas12a nucleases, Cas12f nucleases reduce the levels of chromosomal translocations, large deletions, and integrated vectors by 2- to 3-fold. Therefore, our findings confirm the editing capacity of Cas12f and reveal the ability of this nuclease family to preserve genome integrity during genome editing.
Project description:In E. coli, editing efficiency (EE) with Cas9-mediated recombineering varies across targets due to differences in the level of Cas9:gRNA DNA double-strand break (DSB)-induced cell death. We found that EE with the same gRNA and repair template can also change with target position, cas9 promoter strength, and growth conditions. Incomplete editing, off-target activity, non-targeted mutations, and failure to cleave target DNA even if Cas9 is bound also compromise EE. These effects on EE were gRNA-specific. We propose that differences in the efficiency of Cas9:gRNA-mediated DNA DSBs and differences in rates of dissociation of Cas9:gRNA complexes from target sites account for the observed variations in EE between gRNAs. We show that editing behavior using the same gRNA can be modified by mutating the gRNA spacer, which changes the DNA DSB activity. Finally, we discuss how variable editing with different gRNAs could limit high-throughput applications and provide strategies to overcome these limitations.
2020-06-06 | GSE132139 | GEO
Project description:Systematic High Throughput Evaluation Reveals FrCas9 Superior Specificity and Efficiency for Therapeutic Genome Editing
Project description:High specificity of e\ngineered nucleases ensures precise genome editing. Couple methods were developed to identify off-target sites of CRISPR/Cas9, but hardly any high-throughput sequencing method can unequivocally determine their targeting efficiencies. Here we describe a comprehensive method, primer-extension-mediated sequencing (PEM-seq), which could sensitively detect CRISPR/Cas9 off-target sites as well as assess their editing efficiency by quantifying DNA interference events at on-target sites. Demonstrated by PEM-seq, we generated a high-fidelity Cas9 variant FeCas9 that possesses similar targeting ability as the wild-type while with extremely low off-target activities. Moreover, we provided further evidences for the broader range of xCas9 protospacer adjacent sequence. We also found the AcrIIA4 inhibitor could inhibit both on- and off-target activities of SpCas9, but it suppressed SpCas9 cleavage at the off-target loci not so efficiently as at the on-target sites. Finally, we believe PEM-seq is applicable to optimizing genome editing strategy for clinical purpose or creating animal model.
Project description:Background: Adenosine deaminases that act on RNA (ADARs) bind to double-stranded and structured RNAs and deaminate adenosines to inosines. This A to I editing is widespread and required for normal life and development. Besides mRNAs and repetitive elements, ADARs can target miRNA precursors. Editing of miRNA precursors can affect processing efficiency and alter target specificity. Interestingly, ADARs can also influence miRNA abundance independent of RNA-editing. In mouse embryos where editing levels are low, ADAR2 was found to be the major ADAR protein that affects miRNA abundance. Here we extend our analysis to adult mouse brains where high editing levels are observed. Results: Using Illumina deep sequencing we compare the abundances of mature miRNAs and editing events within them, between wild-type and ADAR2 knockout mice in the adult mouse brain. Reproducible changes in abundance of specific miRNAs are observed in ADAR2 deficient mice. Most of these quantitative changes seem unrelated to A to I editing events. However, many A to G transitions in cDNAs prepared from mature miRNA sequences, reflecting A to I editing events in the RNA, are observed with frequencies reaching up to 80%. About half of these editing events are primarily caused by ADAR2 while a few miRNAs show increased editing in the absence of ADAR2, suggesting preferential editing by ADAR1. Moreover, novel, previously unknown editing events were identified in several miRNAs. In general 64% of all editing events are located within the seed region of mature miRNAs. In one of these cases retargeting of the edited miRNA could be verified in reporter assays. Also, altered processing efficiency upon editing near a processing site could be experimentally verified. Conclusions: ADAR2 can significantly influence the abundance of certain miRNAs in the brain. Only in a few cases changes in miRNA abundance can be explained by miRNA editing. Thus, ADAR2 binding to miRNA precursors, without editing them, may influence their processing and thereby abundance. ADAR1 and ADAR2 have both overlapping and distinct specificities for editing of miRNA editing sites. Over 60% of editing occurs in the seed region possibly changing target specificities for many edited miRNAs. Examination of the effect of ADAR2 on gene expression in mature mouse wildtype and ADAR2 knockout brain using AffymetrixM-BM-. GeneChipM-BM-. Whole Transcript (WT) Expression Arrays (Analysis by KFB Regensburg, Germany)