Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Bacillus subtilis 168 cells: wild-type vs. (ccpN-yqfL) double mutant


ABSTRACT: Global transcriptional profiling of Bacillus subtilis cells comparing wild-type to a (ccpN-yqfL) double mutant. Abstract of the associated publication (article accepted): The transcriptional regulator CcpN of Bacillus subtilis has been recently characterized as a repressor of two gluconeogenic genes, gapB and pckA, and of a small non-coding regulatory RNA, sr1, involved in arginine catabolism. Deletion of ccpN impairs growth on glucose and strongly alters the distribution of intracellular fluxes, rerouting the main glucose catabolism from glycolysis to the pentose phosphate (PP) pathway. Using transcriptome analysis, we show that during growth on glucose, gapB and pckA are the only protein-coding genes directly repressed by CcpN. By quantifying intracellular fluxes in deletion mutants, we demonstrate that derepression of pckA under glycolytic condition causes the growth defect observed in the ccpN mutant due to extensive futile cycling through the pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate kinase. Beyond ATP dissipation via this cycle, PckA activity causes a drain on tricarboxylic acid cycle intermediates, which we show to be the main reason for the reduced growth of a ccpN mutant. The high flux through the PP pathway in the ccpN mutant is modulated by the flux through the alternative glyceraldehyde-3-phosphate dehydrogenases, GapA and GapB. Strongly increased concentrations of intermediates in upper glycolysis indicate that GapB overexpression causes a metabolic jamming of this pathway and, consequently, increases the relative flux through the PP pathway. In contrast, derepression of sr1, the third known target of CcpN, plays only a marginal role in ccpN mutant phenotypes. Two-condition experiment: wt vs. (ccpN-yqfL) double mutant. 2 totally independent comparisons were performed different days with 2 independent RNA preparations and 2 sets of macroarrays.

ORGANISM(S): Bacillus subtilis subsp. subtilis str. 168

SUBMITTER: Thierry Doan 

PROVIDER: E-GEOD-11876 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

CcpN controls central carbon fluxes in Bacillus subtilis.

Tännler Simon S   Fischer Eliane E   Le Coq Dominique D   Doan Thierry T   Jamet Emmanuel E   Sauer Uwe U   Aymerich Stéphane S  

Journal of bacteriology 20080627 18


The transcriptional regulator CcpN of Bacillus subtilis has been recently characterized as a repressor of two gluconeogenic genes, gapB and pckA, and of a small noncoding regulatory RNA, sr1, involved in arginine catabolism. Deletion of ccpN impairs growth on glucose and strongly alters the distribution of intracellular fluxes, rerouting the main glucose catabolism from glycolysis to the pentose phosphate (PP) pathway. Using transcriptome analysis, we show that during growth on glucose, gapB and  ...[more]

Similar Datasets

2008-06-26 | E-GEOD-11873 | biostudies-arrayexpress
2008-07-01 | E-GEOD-11937 | biostudies-arrayexpress
2008-07-01 | GSE11876 | GEO
2008-06-26 | GSE11873 | GEO
2010-06-25 | E-GEOD-7183 | biostudies-arrayexpress
2007-04-17 | E-TABM-221 | biostudies-arrayexpress
2023-11-11 | GSE161358 | GEO
2006-11-13 | E-TABM-137 | biostudies-arrayexpress
2007-05-11 | E-TABM-266 | biostudies-arrayexpress
2019-12-17 | PXD012964 | Pride