Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Comparison of Environmental and Genetic models of ADHD


ABSTRACT: ADHD is the most common neurobehavioral disorder in school-aged children. In addition to genetic factors, environmental influences or gene x environmental interactions also play an important role in ADHD. One example of a well studied environmental risk factor for ADHD is exposure to polychlorinated biphenyls (PCBs). In this study, we investigated whether the well-established genetic model of ADHD based on the Spontaneously Hypertensive Rat (SHR) and a well established PCB-based model of ADHD exhibited similar molecular changes in brain circuits involved in ADHD. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR. The results show that the expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11 and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1 and Hes6.The epigenetic genes Crebbp, Mecp2 and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR.

ORGANISM(S): Rattus norvegicus

SUBMITTER: Frank Middleton 

PROVIDER: E-GEOD-12457 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study.

DasBanerjee Tania T   Middleton Frank A FA   Berger David F DF   Lombardo John P JP   Sagvolden Terje T   Faraone Stephen V SV  

American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 20081201 8


Attention deficit hyperactivity disorder (ADHD) is the most common neurobehavioral disorder in school-aged children. In addition to genetic factors, environmental influences or gene x environmental interactions also play an important role in ADHD. One example of a well studied environmental risk factor for ADHD is exposure to polychlorinated biphenyls (PCBs). In this study, we investigated whether the well-established genetic model of ADHD based on the spontaneously hypertensive rat (SHR) and a  ...[more]

Similar Datasets

2008-11-21 | GSE12457 | GEO
2017-03-15 | GSE96587 | GEO
2023-09-20 | GSE225146 | GEO
2024-03-27 | GSE228356 | GEO
2008-10-20 | E-GEOD-9694 | biostudies-arrayexpress
2008-06-15 | E-GEOD-7483 | biostudies-arrayexpress
2022-08-17 | GSE188336 | GEO
2015-07-03 | E-GEOD-41453 | biostudies-arrayexpress
2008-10-25 | E-GEOD-8491 | biostudies-arrayexpress
2013-04-16 | E-GEOD-31457 | biostudies-arrayexpress