Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcriptomic and physiological responses of Bacillus cereus to organic and inorganic acid down-shocks


ABSTRACT: Comparative phenotype and transcriptome analyses were performed with Bacillus cereus ATCC 14579 exposed to acid down-shock to pH 5.5 set with different acidulants. When acidified with hydrochloric acid (HCl), growth was diminished, whereas 2 mM undissociated lactic acid (HL) or acetic acid (HAc) stopped growth without inactivation (bacteriostatic condition), and 15 mM undissociated HAc caused growth arrest and, finally, cell death, as reflected by a 3 to 4 log inactivation (bactericidal condition). Within the first 60 min after pH down-shock, the intracellular ATP levels of cultures shocked with HCl were increased. The bacteriostatic pH shocks did not result in increased nor decreased intracellular ATP levels, indicating that the high energy status within the stressed aerobically grown B. cereus cells could be maintained. In contrast, exposure to 15 mM undissociated HAc resulted in significant lower ATP levels, which was in accordance with the observed inactivation. The transcriptomic responses pH down-shocked cultures were studied in the same time frame. The analyses revealed general and specific responses coupled to the different phenotypes and the acidulant used. The general acid stress response, shown in all different pH shocks, involves modulation of pyruvate metabolism and an oxidative stress response. The shifts in pyruvate metabolism include induction dehydrogenases of a butanediol fermentation pathway under non-lethal acid stress conditions and of lactate, formate, and ethanol fermentation pathways under 15 mM HAc stress. Other 15 mM HAc-specific responses were induction of the alternative electron-transport systems, including cydAB, and fatty acid biosynthesis genes. Differences in gene expression for the bacteriostatic organic acid stress conditions compared to the growth-retarded inorganic stress condition indicated a more stringent oxidative stress response, including induction of an additional catalase gene and a gene encoding a Dps-like protein. Moreover, modulations in amino acid and oligopeptide transport were also found for the 2 mM HAc and HL shocks. HL-specific and HAc-specific responses both involve amino acid metabolism. Our study on the genome-wide responses of aerobically grown B. cereus pH 5.5 shocks provides a unique overview of the different responses induced by three acidulants relevant for food preservation. Per acid down-shock three exposure times (i.e., 10, 30 and 60 min) were each compared with non-exposed cells (i.e., t0). In total 4 different pH 5.5 acid down-shocks were applied. pH 5.5 was reached by adding different acidulants i.e., hydrochloric acid (HCl), lactic acid (HL) resulting in 2 mM undissociated HL, acetic acid (HAc) resulting in 15 mM undissociated HAc, and a combination of acetic acid and hydrochloric acid (HAc/HCl) resulting in 2 mM undissociated HAc. The experiments were performed in duplicate and the duplicate samples were hybridised with a dye-swap.

ORGANISM(S): Bacillus cereus

SUBMITTER: Marcel Tempelaars 

PROVIDER: E-GEOD-15140 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks.

Mols Maarten M   van Kranenburg Richard R   Tempelaars Marcel H MH   van Schaik Willem W   Moezelaar Roy R   Abee Tjakko T  

International journal of food microbiology 20091005 1


Comparative phenotype and transcriptome analyses were performed with Bacillus cereus ATCC 14579 exposed to pH 5.5 set with different acidulants including hydrochloric acid (HCl), lactic acid (HL) and acetic acid (HAc). Phenotypes observed included a decreased growth rate (with HCl), bacteriostatic and bactericidal conditions, with 2mM undissociated HAc or HL, and 15mM undissociated HAc, respectively. In the latter condition a concomitant decrease in intracellular ATP levels was observed. The tra  ...[more]

Similar Datasets

2010-11-01 | E-GEOD-19186 | biostudies-arrayexpress
2010-06-25 | E-GEOD-13773 | biostudies-arrayexpress
2010-06-25 | E-GEOD-13711 | biostudies-arrayexpress
2010-06-25 | E-GEOD-13729 | biostudies-arrayexpress
2012-06-17 | E-GEOD-35697 | biostudies-arrayexpress
2013-03-01 | E-GEOD-41535 | biostudies-arrayexpress
2010-09-15 | E-GEOD-7660 | biostudies-arrayexpress
2010-05-25 | E-GEOD-7843 | biostudies-arrayexpress
2013-09-01 | E-GEOD-39696 | biostudies-arrayexpress
2013-03-01 | E-GEOD-41534 | biostudies-arrayexpress