Effect of expression of M.HpyAVIB, a C5 cytosine methyltransferase on the E. coli BL21 (DE3) transcriptome
Ontology highlight
ABSTRACT: Helicobacter pylori genome is rich in restriction - modification (R-M) systems. Around 4 % of the genome codes for components of R-M systems. hpyAVIBM, which codes for a putative phase-variable C5 - cytosine methyltransferase (MTase) from H. pylori lacks a cognate restriction enzyme. To analysis the effect of expression of hpyAVIBM on the E. coli transcriptome, microarray analysis was done with the cells expressing wild type MTase with the cells expressing catalytic inactive mutant of the MTase.
Project description:Helicobacter pylori genome is rich in restriction - modification (R-M) systems. Around 4 % of the genome codes for components of R-M systems. hpyAVIBM, which codes for a putative phase-variable C5 - cytosine methyltransferase (MTase) from H. pylori lacks a cognate restriction enzyme.
Project description:Helicobacter pylori genome is rich in restriction - modification (R-M) systems. Around 4 % of the genome codes for components of R-M systems. hpyAVIBM, which codes for a putative phase-variable C5 - cytosine methyltransferase (MTase) from H. pylori lacks a cognate restriction enzyme. To analysis the effect of deleting hpyAVIBM on the Helicobacter pylori transcriptome, microarray analysis was done with the wild type strains and corresponding hpyAVIBM deletion strains
Project description:Helicobacter pylori genome is rich in restriction - modification (R-M) systems. Around 4 % of the genome codes for components of R-M systems. hpyAVIBM, which codes for a putative phase-variable C5 - cytosine methyltransferase (MTase) from H. pylori lacks a cognate restriction enzyme.
Project description:BackgroundEscherichia coli is one of the most widely used hosts for recombinant protein production in academia and industry. Strain BL21(DE3) is frequently employed due to its advantageous feature of lacking proteases which avoids degradation of target protein. Usually it is used in combination with the T7-pET system where induction is performed by one point addition of IPTG. We recently published a few studies regarding lactose induction in BL21(DE3) strains. BL21(DE3) can only take up the glucose-part of the disaccharide when fed with lactose. However, initially additional glucose has to be supplied as otherwise the ATP-related lactose uptake barely happens. Yet, as lactose is an inexpensive compound compared to glucose and IPTG, a new induction strategy by a lactose-only feed during induction seems attractive. Thus, we investigated this idea in the galactose metabolizing strain HMS174(DE3).ResultsWe show that strain HMS174(DE3) can be cultivated on lactose as sole carbon source during induction. We demonstrate that strain HMS174(DE3) exhibits higher product and biomass yields compared to BL21(DE3) when cultivated in a lactose fed-batch. More importantly, HMS174(DE3) cultivated on lactose even expresses more product than BL21(DE3) in a standard IPTG induced glucose fed-batch at the same growth rate. Finally, we demonstrate that productivity in HMS174(DE3) lactose-fed batch cultivations can easily be influenced by the specific lactose uptake rate (qs,lac). This is shown for two model proteins, one expressed in soluble form and one as inclusion body.ConclusionsAs strain HMS174(DE3) expresses even slightly higher amounts of target protein in a lactose fed-batch than BL21(DE3) in a standard cultivation, it seems a striking alternative for recombinant protein production. Especially for large scale production of industrial enzymes cheap substrates are essential. Besides cost factors, the strategy allows straight forward adjustment of specific product titers by variation of the lactose feed rate.
Project description:Escherichia coli BL21(DE3) has long served as a model organism for scientific research, as well as a workhorse for biotechnology. Here we present the most current genome annotation of E. coli BL21(DE3) based on the transcriptome structure of the strain that was determined for the first time. The genome was annotated using multiple automated pipelines and compared to the current genome annotation of the closely related strain, E. coli K-12. High-resolution tiling array data of E. coli BL21(DE3) from several different stages of cell growth in rich and minimal media were analyzed to characterize the transcriptome structure and to provide supporting evidence for open reading frames. This new integrated analysis of the genomic and transcriptomic structure of E. coli BL21(DE3) has led to the correction of translation initiation sites for 88 coding DNA sequences and provided updated information for most genes. Additionally, 37 putative genes and 66 putative non-coding RNAs were also identified. The panoramic landscape of the genome and transcriptome of E. coli BL21(DE3) revealed here will allow us to better understand the fundamental biology of the strain and also advance biotechnological applications in industry.
Project description:Escherichia coli BLR(DE3) is a commercially available recA-deficient derivative of BL21(DE3), one of the most widely used strains for recombinant protein expression. Here, we present the full-genome sequence of BLR(DE3) and highlight additional differences with its parent strain BL21(DE3) which were previously unreported but may affect its physiology.
Project description:In many industrial sectors continuous processing is already the golden standard to maximize productivity. However, when working with living cells, subpopulation formation causes instabilities in long-term cultivations. In cascaded continuous cultivation, biomass formation and recombinant protein expression can be spatially separated. This cultivation mode was found to facilitate stable protein expression using microbial hosts, however mechanistic knowledge of this cultivation strategy is scarce. In this contribution we present a method workflow to reduce workload and accelerate the establishment of stable continuous processes with E. coli BL21(DE3) exclusively based on bioengineering methods.
Project description:When producing recombinant proteins, the use of Escherichia coli strain BL21(DE3) in combination with the T7-based pET-expression system is often the method of choice. In a recent study we introduced a mechanistic model describing the correlation of the specific glucose uptake rate (qs,glu) and the corresponding maximum specific lactose uptake rate (qs,lac,max) for a pET-based E. coli BL21(DE3) strain producing a single chain variable fragment (scFv). We showed the effect of qs,lac,max on productivity and product location underlining its importance for recombinant protein production. In the present study we investigated the mechanistic qs,glu/qs,lac,max correlation for four pET-based E. coli BL21(DE3) strains producing different recombinant products and thereby proved the mechanistic model to be platform knowledge for E. coli BL21(DE3). However, we found that the model parameters strongly depended on the recombinant product. Driven by this observation we tested different dynamic bioprocess strategies to allow a faster investigation of this mechanistic correlation. In fact, we succeeded and propose an experimental strategy comprising only one batch cultivation, one fed-batch cultivation as well as one dynamic experiment, to reliably determine the mechanistic model for qs,glu/qs,lac,max and get trustworthy model parameters for pET-based E. coli BL21(DE3) strains which are the basis for bioprocess development.
Project description:The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Project description:BackgroundStyrene is a versatile commodity petrochemical used as a monomer building-block for the synthesis of many useful polymers. Although achievements have been made on styrene biosynthesis in microorganisms, several bottleneck problems limit factors for further improvement in styrene production.ResultsA two-step styrene biosynthesis pathway was developed and introduced into Escherichia coli BL21(DE3). Systematic optimization of styrene biosynthesis, such as enzyme screening, codon and plasmid optimization, metabolic flow balance, and in situ fermentation was performed. Candidate isoenzymes of the rate-limiting enzyme phenylalanine ammonia lyase (PAL) were screened from Arabidopsis thaliana (AtPAL2), Fagopyrum tataricum (FtPAL), Petroselinum crispum (PcPAL), and Artemisia annua (AaPAL). After codon optimization, AtPAL2 was found to be the most effective one, and the engineered strain was able to produce 55 mg/L styrene. Subsequently, plasmid optimization was performed, which improved styrene production to 103 mg/L. In addition, two upstream shikimate pathway genes, aroF and pheA, were overexpressed in the engineered strain, which resulted in styrene production of 210 mg/L. Subsequently, combined overexpression of tktA and ppsA increased styrene production to 275 mg/L. Finally, in situ product removal was used to ease the burden of end-product toxicity. By using isopropyl myristate as a solvent, styrene production reached a final titer of 350 mg/L after 48 h of shake-flask fermentation, representing a 636% improvement, which compared with that achieved in the original strain.ConclusionsThis present study achieved the highest titer of de novo production of styrene in E. coli at shake-flask fermentation level. These results obtained provided new insights for the development of microbial production of styrene in a sustainable and environment friendly manner.