ABSTRACT: Experimentally mapped transcriptome structure of Sulfolobus solfataricus P2 by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 25 nt). Sulfolobus solfataricus P2 growth curve experiments were conducted in batch culture. Reference samples were cultured at mid-log phase (OD600 = 0.312). Eight samples were collected that spanned the key phases of the growth curve. Total RNA from samples of growth curve and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. Dye-flip experiments were done for each sample. Log ratios were calculated for each probe (growth curve sample/reference). Transcriptome browser is available at http://baliga.systemsbiology.net/enigma/.
Project description:Genome reorganization by large scale indels, gene displacements, and horizontal gene transfers allow an organism to re-organize genes into operons (“operonization”) and explore novel strategies for adapting to its changing environment. We have characterized the process of operonization by mapping and comparing transcriptome structures (TSs) of four phylogenetically diverse exptremophilic archaea: a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an anaerobic thermophile (Pyrococcus furiosis DSM 3638), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and a photoheterotrophic halophile (Halobacterium salinarum NRC-1). We demonstrate how the evolution of new transcriptional elements (promoters and terminators) is utilized as a mechanism to incorporate translocated, inverted, and newly acquired genes into existing gene regulatory programs. This SuperSeries is composed of the following subset Series: GSE26777: Methanococcus maripaludis S2 growth curve, tiling arrays GSE26778: Pyrococcus furiosus DSM 3638 growth curve, tiling arrays GSE26779: Sulfolobus solfataricus P2 growth curve, tiling arrays Refer to individual Series
Project description:Experimentally mapped transcriptome structure of Pyrococcus furiosus DSM 3638 by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 16 nt). Pyrococcus furiosus DSM 3638 growth curve experiments were conducted in batch culture. Reference samples were cultured at mid-log phase (OD600 = 0.096). Seven samples were collected that spanned the key phases of the growth curve. Total RNA from samples of growth curve and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. Dye-flip experiments were done for each sample. Log ratios were calculated for each probe (growth curve sample/reference). Transcriptome browser is available at http://baliga.systemsbiology.net/enigma/.
Project description:Experimentally mapped transcriptome structure of Methanococcus maripaludis S2 by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 14 nt). Methanococcus maripaludis MM901, a wild type Methanococcus maripaludis S2 with an in frame deletion of the uracil phosphoribosyltransferase gene (Proc. Natl. Acad. Sci. U S A 107: 11050-11055) growth curve experiments were conducted in batch culture. Reference samples were cultured at mid-log phase (OD660 = 0.804). Eight samples were collected that spanned the key phases of the growth curve. Total RNA from samples of growth curve and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. Dye-flip experiments were done for each sample. Log ratios were calculated for each probe (growth curve sample/reference). Transcriptome browser is available at http://baliga.systemsbiology.net/enigma/.
Project description:Effects of mtd (MMP0372) on physiology and regulation of methanogenesis in Methanococcus maripaludis The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). Hydrogen limited condition was 20 mL/min H2. After the OD increased above 0.6 (24 h), the medium flow was turned on at 0.083 L/h. Medium was either phosphate limiting (0.12 mM K2HPO4) or phosphate excess (0.8 mM K2HPO4). Culture samples (1.5 mL) were rapidly removed from the vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.
Project description:Effects of frcA (MMP0820) on physiology and regulation of methanogenesis in Methanococcus maripaludis The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). Hydrogen limited condition was 21 mL/min H2. After the OD increased above 0.6 (24 h), the medium flow was turned on at 0.083 L/h. Medium was either phosphate limiting (0.12 mM K2HPO4) or phosphate excess (0.8 mM K2HPO4). Different nitrogen sources of NH4Cl and alanine was used (10mM). Culture samples (1.5 mL) were rapidly removed from the vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.
Project description:Effects of fruA (MMP1382) and frcA (MMP0820) on physiology and regulation of methanogenesis in Methanococcus maripaludis The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). Hydrogen limited condition was 22 mL/min H2. After the OD increased above 0.6 (24 h), the medium flow was turned on at 0.083 L/h. Medium was either phosphate limiting (0.12 mM K2HPO4) or phosphate excess (0.8 mM K2HPO4). Culture samples (1.5 mL) were rapidly removed from the vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.
Project description:Effects of hydrogen on physiology and regulation of methanogenesis in Methanococcus maripaludis The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). Hydrogen limited condition was 21 mL/min H2. After the OD increased above 0.6 (24 h), the medium flow was turned on at 0.083 L/h. Medium was either phosphate limiting (0.12 mM K2HPO4) or nitrogen limiting (3 mM NH4Cl). Culture samples (1.5 mL) were rapidly removed from the vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.
Project description:Methanogens catalyze the critical, methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter and have applications in carbon-neutral fuel production. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and non-coding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 100 different steady-state and time course experiments that were performed in chemostats, or batch cultures, under a spectrum of environmental perturbations that modulated methanogenesis. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to inter-coordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel TFs in the regulation of phosphate-dependent repression of formate dehydorgenase M-bM-^@M-^S a key enzyme in the methanogenesis pathway. The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). Growth conditions were carefully designed to separate the effects of different environmental factors. To ensure physico-chemical factors being constant, all cell cultures were performed using continuous cultivations with a constant dilution rate. The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). For shifts from a H2 excess to a H2 limited condition, H2 was lowered from standard 110 mL/min to 21 mL/min and Ar was raised from standard 35 mL/min to 125 mL/min. Shifts from N-limited to N-excess conditions were achieved by raising NH4Cl from 2.8 mM to the standard 10 mM. The dilution rate was held constant at 0.083 h-1. For time-series array data, cultures before perturbation were allowed to reach steady state. We rapidly changed concentration(s) of H2 and/or a nutrient, and sampled at intervals after the perturbation; right away, after 5 mins, 10, 20, 30, 45, 60, 90, 120, 180, and 300 mins. Culture samples (1.5 mL) were rapidly removed from the chemostat vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.
Project description:Methanogens catalyze the critical, methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter and have applications in carbon-neutral fuel production. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and non-coding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 100 different steady-state and time course experiments that were performed in chemostats, or batch cultures, under a spectrum of environmental perturbations that modulated methanogenesis. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to inter-coordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel TFs in the regulation of phosphate-dependent repression of formate dehydorgenase a key enzyme in the methanogenesis pathway. The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). Growth conditions were carefully designed to separate the effects of different environmental factors. To ensure physico-chemical factors being constant, all cell cultures were performed using continuous cultivations with a constant dilution rate. The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). For shifts from a H2 excess to a H2 limited condition, H2 was lowered from standard 110 mL/min to 21 mL/min and Ar was raised from standard 35 mL/min to 125 mL/min. The dilution rate was held constant at 0.083 h-1. For time-series array data, cultures before perturbation were allowed to reach steady state. We rapidly changed concentration(s) of H2 and/or a nutrient, and sampled at intervals after the perturbation; right away, after 5 mins, 10, 20, 30, 45, 60, 90, 120, 180, and 300 mins. Culture samples (1.5 mL) were rapidly removed from the chemostat vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.
Project description:Methanogens catalyze the critical, methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter and have applications in carbon-neutral fuel production. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and non-coding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 100 different steady-state and time course experiments that were performed in chemostats, or batch cultures, under a spectrum of environmental perturbations that modulated methanogenesis. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to inter-coordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel TFs in the regulation of phosphate-dependent repression of formate dehydorgenase M-bM-^@M-^S a key enzyme in the methanogenesis pathway. The strain was grown by continuous culture in a one-liter fermenter (New Brunswick Scientific, Edison, NJ) at 37M-BM-0C (FEMS Microbiol Lett 238: 85-91, 2004). Medium and gas compositions were modified from those for non-limiting conditions (BMC Microbiol 9: 149, 2009). Growth conditions were carefully designed to separate the effects of different environmental factors. To ensure physico-chemical factors being constant, all cell cultures were performed using continuous cultivations with a constant dilution rate. The standard gassing regime was 110 mL/min H2, 40 mL/min CO2, 35 mL/min Ar, and 15 mL/min H2S/Ar mixture (1:99). For shifts from a H2 excess to a H2 limited condition, H2 was lowered from standard 110 mL/min to 21 mL/min and Ar was raised from standard 35 mL/min to 125 mL/min. For shifts from P-limited to P-excess conditions, phosphate was raised from 0.18 mM to the standard 0.8 mM. The dilution rate was held constant at 0.083 h-1. For time-series array data, cultures before perturbation were allowed to reach steady state. We rapidly changed concentration(s) of H2 and/or a nutrient, and sampled at intervals after the perturbation; right away, after 5 mins, 10, 20, 30, 45, 60, 90, 120, 180, and 300 mins. Culture samples (1.5 mL) were rapidly removed from the chemostat vessels by syringe and cell pellets collected by microcentrifugation, immediately frozen in an ethanol-dry ice bath, and stored at -80M-BM-0C. Total RNA from each sample was compared against a reference RNA pool that was generated in bulk from a mid-log phase culture of MM901. Total RNA from samples and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. After hybridization and washing according to array manufacturer's instructions, the arrays were scanned by Microarray Scanner (Agilent Technologies, Santa Clara, CA). Dye-flip experiments were done for each sample.