High-throughput sequencing of mouse liver transcriptome in Clock mutant animals
Ontology highlight
ABSTRACT: Circadian profile of polyA RNA by RNA-Seq, collected from Clock?19 mouse liver at CT22, CT28, CT34, CT40. RNA from three livers pooled per time point. 4 Clock mutant samples with no replicates
Project description:Circadian profile of polyA RNA by RNA-Seq, collected from mouse liver at CT23, CT29, CT35, CT41, CT47, CT53, CT59, CT65. RNA from three livers pooled per time point. 8 wildtype samples with no replicates.
Project description:The interior of the neuronal cell nucleus is a highly organized 3-dimensional (3D) structure in which regions of the genome that are millions of bases apart participate in specialized sub-structures with dedicated functions. To investigate neuronal chromatin organization and dynamics in vivo, we generated bitransgenic mice that express histone GFP-tagged H2B in principal neurons of the forebrain. Surprisingly, the expression of this chimeric histone in mature neurons causes chromocenter declustering and disrupts the association of heterochromatin with the nuclear lamina. The loss of these structures does not affect neuronal viability but is associated with specific transcriptional and behavioral deficits related to serotonergic dysfunction. Overall, our results demonstrate that the 3D-organization of chromatin in the neuronal nucleus supports an additional level of epigenetic regulation of gene expression that critically influences neuronal function and indicate that some loci associated with neuropsychiatric disorders may be particularly sensitive to changes in chromatin architecture. Genome-wide profiling by high throughput sequencing of H3K27me3 in the adult hippocampus of CaMKII-tTA/tetO-H2BGFP (H2BGFP) and their wild-type littermates mice (WT). Chromatin immunoprecipitation (ChIP) was carried out using pooled hippocampal tissue from 3 mice (one hippocampus per mouse). One DNA library was constructed per genotype. Each DNA library was prepared from pooled immunoprecipitated DNA from 4 independent ChIP assays. In total, tissue from 12 different mice was used to prepare each DNA library. 60% of a lane was used to perform single end (1x50bp) multiplex sequencing in HiSeq 2500 apparatus (Illumina). Each library, was sequenced in duplicate (in two independent sequencing runs. Technical replicates).
Project description:The interior of the eukaryotic cell nucleus is a highly organized 3D structure. In mature hippocampal and cortical pyramidal neurons, transcriptionally silent DNA is typically compacted in a few clusters referred to as chromocenters that are strongly stained with DNA intercalating agents like DAPI and whose function is still uncertain. We found that this 3D structure was severely disrupted by the incorporation of the chimeric histone H2BGFP into neuronal chromatin. Experiments in inducible and forebrain restricted bitransgenic mice demonstrated that the expression of this histone alters the higher-order organization of neuronal heterochromatin and causes a complex behavioral phenotype that includes hyperactivity, and social interaction, prepulse inhibition and cognitive defects. This phenotype was associated with highly specific transcriptional deficits that affected several serotonin receptor genes located at the edge of gene desert regions. Pharmacological and electrophysiological experiments indicate that this epigenetically-induced hyposerotonergic state may underlie the behavioral defects. Our results suggest a new role for perinuclear heterochromatin and chromocenter organization in the epigenetic regulation of neuronal gene expression and mental illness. We used microarrays to detect differential gene expression in transgenic mice expressing histone H2BGFP in the forebrain. We obtained triplicate samples (biological replicates) of either genotype (wild-type and H2BGFP mice). Each sample contained pooled total RNA from the hippocampi of 2 three-month old genotype-matched mice.
Project description:Background RNA sequencing (RNA-seq) is a powerful technique for identifying and quantifying transcription and splicing events, both known and novel. However, given its recent development and the proliferation of library construction methods, understanding the bias it introduces is incomplete but critical to realizing its value. Results Here we present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the technical biases in RNA-seq library generation and sequencing at scale. We created a pool of > 1000 in vitro transcribed (IVT) RNAs from a full-length human cDNA library and sequenced them with poly-A and total RNA-seq, the most common protocols. Because each cDNA is full length and we show IVT is incredibly processive, each base in each transcript should be equivalently represented. However, with common RNA-seq applications and platforms, we find ~50% of transcripts have > 2-fold and ~10% have > 10-fold differences in within-transcript sequence coverage. Strikingly, we also find > 6% of transcripts have regions of high, unpredictable sequencing coverage, where the same transcript varies dramatically in coverage between samples, confounding accurate determination of their expression. To get at causal factors, we used a combination of experimental and computational approaches to show that rRNA depletion is responsible for the most significant variability in coverage and that several sequence determinants also strongly influence representation. Conclusions In sum, these results show the utility of IVT-seq in promoting better understanding of bias introduced by RNA-seq and suggest caution in its interpretation. Furthermore, we find that rRNA-depletion is responsible for substantial, unappreciated biases in coverage. Perhaps most importantly, these coverage biases introduced during library preparation suggest exon level expression analysis may be inadvisable. 5 rRNA-depleted samples with duplicates, 1 polyA selected, 1 total RNA, and 1 plasmid library all without replicates.
Project description:Overexpression of VEGF (vascular endothelial growth factor) in the germinal matrix of the brain causes GMH-IVH-like anomalies (Germinal matrix hemorrhage [GMH]; intraventricular hemorrhage [IVH]). This dataset provides the list of differentially expressed genes in the brain cortices of embryos with transgene directed overexpression of VEGF. Eight samples were analyzed, including four control and four with induced over expression of VEGF. A simple unpaired T-test was used for analysis, with GeneSpring software,
Project description:Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies which have intrinsic limitations. Here, we used advanced sequencing methods, RNA-seq and ChIP-seq, to obtain an unprecedented view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the nucleus accumbens, a key brain reward region. We identify unique combinations of chromatin changes, or signatures, that accompany cocaine’s regulation of gene expression, including the dramatic involvement of pre-mRNA alternative splicing in cocaine action. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of drug regulation, thereby providing new insight into the biological basis of cocaine addiction. More broadly, the combinatorial chromatin and transcriptional approaches that we describe serve as an important resource for the field, as they can be applied to other systems to reveal novel transcriptional and epigenetic mechanisms of neuronal regulation. ChIP-seq of 6 marks (H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me2, RNApolII) were done on mouse nucleus accumbens 24 hr after 7 day daily cocaine ip injection with saline as control. Three replicates for each condition.
Project description:This experiment used RNA-Seq technology to examine transcription profile in FACS-sorted MIP-EGFP+ mouse pancreatic cells at E16.5 (nascent beta cells) and P60 (mature beta cells). Such an analysis should reveal the gene transcription alterations for beta cell development and for function.
Project description:G protein coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active Gs-coupled GPCR, under the control of the 2.3 kb-Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone which were accompanied by an increase in OB lineage cells, especially immature OBs, indicated by an expansion of cells expressing Osterix and Runx2 in the whole femur. In this study, we further evaluated how Gs signaling in OBs affects intramembranous bone formation by examining calvariae of one-and nine-week-old Col1(2.3)/Rs1 mice. Rs1 calvariae displayed a dramatic increase in total volume and trabecular bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space in Rs1 expressing mice while Osteocalcin was expressed predominantly in cells along bone surfaces. These findings resembled that previously seen in Rs1 femoral bones, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb-Col I promoter could influence early OB commitment, differentiation, and/or proliferation. However, it is still unclear how G protein signaling in mature OBs leads to the observed alterations in bone mass. In this study, we investigated the cellular basis of the skeletal changes by assessing the effect of Rs1 expression in vivo on the transcriptome of mature OBs. We identified the complete set of Gs-GPCRs and other GPCRs that are expressed on OBs which may contribute to the observed skeletal phenotype. Candidate paracrine mediators of the effect of Gs signaling in OBs were determined. Genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. Our results identify novel candidate mediators of the anabolic response to the skeleton to Gs signaling in mature OBs. We utilized a microarray approach to examine Rs1-induced alterations in the OB transcriptome. The approach used to identify an approximate snapshot of the OB transcriptome at the time of sacrifice by isolating the OB population that expresses Rs1 by GFP labeling, without the use of cell culture. We compared gene expression between control OBs and OBs-expressing Rs1 in triplicates.
Project description:Identification of the all RNA species associated with DNMT1. Using a comparative genome-scale approach we identified and correlated the RNA species physically associated with DNMT1 and proximal to the annotated genes to the methylation status of the corresponding loci and expression levels of the respective genes. This comparative approach delineated the first -DNMT1 centered- 'epitranscriptome' map, a comprehensive map cross-referencing DNMT1-interacting transcripts to (i) DNA methylation and (ii) gene expression profile. Relationship between DNMT1-RNA interactions, DNA methylation and gene expression