Chronic cocaine-regulated epigenome in mouse [ChIP-Seq]
Ontology highlight
ABSTRACT: Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies which have intrinsic limitations. Here, we used advanced sequencing methods, RNA-seq and ChIP-seq, to obtain an unprecedented view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the nucleus accumbens, a key brain reward region. We identify unique combinations of chromatin changes, or signatures, that accompany cocaine’s regulation of gene expression, including the dramatic involvement of pre-mRNA alternative splicing in cocaine action. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of drug regulation, thereby providing new insight into the biological basis of cocaine addiction. More broadly, the combinatorial chromatin and transcriptional approaches that we describe serve as an important resource for the field, as they can be applied to other systems to reveal novel transcriptional and epigenetic mechanisms of neuronal regulation. ChIP-seq of 6 marks (H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me2, RNApolII) were done on mouse nucleus accumbens 24 hr after 7 day daily cocaine ip injection with saline as control. Three replicates for each condition.
Project description:Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1-important for synaptic connections during development-as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine. c57bl/6 mice were given IP injections of chronic cocaine 20mg/kg once per day for 7 days and sacrificed 30 minutes after the final dose of cocaine. Control animals were given saline for 7 days and sacrificed 30 minutes after the final dose of saline. Nucleus accumbens (NAc) tissue was collected and then PARP-1 ChIP-seq was performed. Three sequencing replicates were performed on each group.
Project description:ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins. BAZ1B (WSTF) ChIP-seq of mouse. Cocaine vs Saline, 3 biological replicates. In social defeat model: Normal control vs Susceptible vs Resilient, 3 biological replicates.
Project description:Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies which have intrinsic limitations. Here, we used advanced sequencing methods, RNA-seq and ChIP-seq, to obtain an unprecedented view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the nucleus accumbens, a key brain reward region. We identify unique combinations of chromatin changes, or signatures, that accompany cocaineM-bM-^@M-^Ys regulation of gene expression, including the dramatic involvement of pre-mRNA alternative splicing in cocaine action. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of drug regulation, thereby providing new insight into the biological basis of cocaine addiction. More broadly, the combinatorial chromatin and transcriptional approaches that we describe serve as an important resource for the field, as they can be applied to other systems to reveal novel transcriptional and epigenetic mechanisms of neuronal regulation. Total RNA was isolated from mouse nucleus accumbens 24 hr after 7 day daily cocaine or saline control ip injection for mRNA sequencing by following illumina RNA seq kit protocol. Another batch of acute cocaine RNA-seq was performed using the same parameters except the treatment group was given 6 days of saline injection followed by 1 day of cocaine injection. The acute cocaine batch serves as control experiments.
Project description:Here we show that Tet1 is down-regulated in mouse nucleus accumbens (NAc), a key brain reward structure, by repeated cocaine administration which enhances behavioral responses to cocaine. Through genome-wide 5hmC profiling, we identified 5hmC changes selectively clustered in both enhancer and coding regions of genes with several annotated neural functions. By coupling with mRNA sequencing, we found cocaine-induced alterations in 5hmC correlate positively with alternative splicing. We also demonstrated that 5hmC alteration at certain genes lasts up to a month after cocaine exposure. DNA Nac samples were collected at various time points after 7 daily cocaoine ip administration for 5hmC and transcriptome analysis
Project description:Despite addiction being one of the most prevalent and debilitating disorders worldwide, effective treatments are lacking. Repeated cocaine exposure induces maladaptive transcriptional regulation within the brainâ??s reward circuitry, such as the nucleus accumbens (NAc), and epigenetic mechanisms, such as histone acetylation or methylation on Lys (K) residues, have been linked to these lasting actions of cocaine. However, in contrast to K methylation, the functional role of histone Arg (R) methylation remains unexplored in addiction models and poorly understood in brain in general. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, as well as in the NAc of cocaine-addicted humans. PRMT6 downregulation occurs selectively in NAc medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we demonstrate that reduced H3R2me2a binding at gene targets in NAc after repeated cocaine is strongly correlated with increased binding of H3K4me3, and identify Src kinase signaling inhibitor 1 (Srcin1 or p140Cap) as a key gene for these chromatin modifications. Cocaine induction of Srcin1 in NAc, which is associated with reduced Src signaling, decreases cocaine reward, the motivation to self administer cocaine, and cocaine-induced changes in NAc MSN dendritic spines. These results suggest that this suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a downregulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of new treatments for cocaine addiction. H3R2me2A ChIP-seq of mouse. Cocaine vs Saline, 3 biological replicates.
Project description:Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies which have intrinsic limitations. Here, we used advanced sequencing methods, RNA-seq and ChIP-seq, to obtain an unprecedented view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the nucleus accumbens, a key brain reward region. We identify unique combinations of chromatin changes, or signatures, that accompany cocaine’s regulation of gene expression, including the dramatic involvement of pre-mRNA alternative splicing in cocaine action. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of drug regulation, thereby providing new insight into the biological basis of cocaine addiction. More broadly, the combinatorial chromatin and transcriptional approaches that we describe serve as an important resource for the field, as they can be applied to other systems to reveal novel transcriptional and epigenetic mechanisms of neuronal regulation.
Project description:Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies which have intrinsic limitations. Here, we used advanced sequencing methods, RNA-seq and ChIP-seq, to obtain an unprecedented view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the nucleus accumbens, a key brain reward region. We identify unique combinations of chromatin changes, or signatures, that accompany cocaine’s regulation of gene expression, including the dramatic involvement of pre-mRNA alternative splicing in cocaine action. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of drug regulation, thereby providing new insight into the biological basis of cocaine addiction. More broadly, the combinatorial chromatin and transcriptional approaches that we describe serve as an important resource for the field, as they can be applied to other systems to reveal novel transcriptional and epigenetic mechanisms of neuronal regulation.
Project description:We cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically-enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. Analysis of small RNA from Mus musculus nucleus accumbens (NAc) and postsynaptic densities (PSD) with and without chronic cocaine treatment.
Project description:DNA methylation profiling of nucleus Accumbens of rats that self administered cocaine, were subjected to 30 withdrawal days, were treated with aCSF, RG108 or SAM and were subjected to extinction tests. The groups consist of: 1. Rats that self-administered cocaine for 10 days and that were subjected to a withdrawal period of 30 days, were injected in the nucleus accumbens with aCSF and were subjected to an extinction test for assessment of cue-induced cocaine-seeking behavior (aCSF) 2. Rats that self-administered cocaine for 10 days and that were subjected to a withdrawal period of 30 days, were injected in the nucleus accumbens with RG108 and were subjected to an extinction test for assessment of cue-induced cocaine-seeking behavior (RG108) 3. Rats that self-administered cocaine for 10 days and that were subjected to a withdrawal period of 30 days, were injected in the nucleus accumbens with SAM and were subjected to an extinction test for assessment of cue-induced cocaine-seeking behavior (SAM)
Project description:Maged1 inactivation induces insensitivity to cocaine by impairing cocaine-evoked release of dopamine and plasticity in the Nucleus accumbens (NAc). Here we have characterized the chromatin epigenetic and transcriptional alterations associated with chronic cocaine exposure in the paraventricular thalamus (PVT, one of the main regulatory inputs of the Nac) in mice WT or conditional KO for Maged1 activity.