The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE38565: The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 1] GSE42033: The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 2] Refer to individual Series
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55. Time course of 10 20 and 30 minutes hyperosmolarity treated yeast cells of wild type (W303), msn2msn4, cdc55, msn2msn5cdc55 genetic background.
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55. Time course of 0, 10 20 and 30 minutes hyperosmolarity treated yeast cells of msn2msn4 or msn2msn4cdc55 genetic background, both carrying plasmid pMsn2pMsn2DNES; reference hybridization: untreated W303 msn2msn4 pMsn2pMsn2DNES labelled with Cy3
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55.
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55.
2012-06-08 | GSE38565 | GEO
Project description:The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4
Project description:BG14(wt) and BG14hog1M-bM-^HM-^F cells were exposed to weak acid (20mM sorbic acid for 20min) to define the role of Hog1 for gene expression during weak acid stress. untreated control and 20 min treatment for both wild type and mutant. 3 biological replicates
Project description:The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 1]
Project description:The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 2]
Project description:Samples GSM206658-GSM206693: Acquired Stress resistance in S. cerevisiae: NaCl primary and H2O2 secondary Transcriptional timecourses of yeast cells exposed to 0.7M NaCl alone, 0.5mM H2O2 alone, or 0.5mM H2O2 following 0.7M NaCl, all compared to an unstressed sample. Repeated using msn2∆ strain. Samples GSM291156-GSM291196: Transcriptional response to stress in strains lacking MSN2 and/or MSN4 Transcriptional timecourses of yeast cells (WT, msn2∆, msn4∆, or msn2∆msn4∆) exposed to 0.7M NaCl for 45 minutes or 30-37˚C Heat Shift for 15 min compared to an unstressed sample of the same strain. Keywords: Stress Response
Project description:Exposure of Saccharomyces cerevisiae to alkaline pH represents a stress condition that generates a compensatory reaction. Here we examine a possible role of the protein kinase-A (PKA) pathway in this response. The phenotypic analysis reveals that mutations that activate the PKA pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation develops tolerance to this stress. We observe that alkalinization causes a transient decrease in cAMP, the main regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 transcription factor which, together with Msn4, mediates a general stress response by binding to STRE sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction in response to alkaline stress. An msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic analysis reveals that after 10 minutes of alkaline stress, the expression of many induced genes (47%) depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive response to this kind of stress and that this response involves Msn2/Msn4-mediated gene remodeling. However, the relevance of attenuation of PKA in high pH tolerance is not restricted to regulation of Msn2 function. Eight samples were analyzed: WT and the MCY5278 mutant strain, lacking both Msn2 and Msn4, in the presence of 20 mM KOH (pH 8) and in the presence of 20 mM KCl (non-induced conditions) for 10 and 30 min of stress. 2 biological replicates were analyzed for each condition, and dye-swapping was carried out for each comparison of samples. We compared the expression profiles of: 1) WT +KOH vs. WT +KCl after 10 min 2) msn2 msn4 mutant +KOH vs. msn2 msn4 +KCl after 10 min 3)WT +KOH vs. WT +KCl after 30 min 4) msn2 msn4 mutant +KOH vs. msn2 msn4 +KCl after 30 min Total number of chips analyzed: 16.