RNA-Sequencing Analysis of High Glucose Treated Monocytes Reveals Novel Transcriptome Signatures and associated Epigenetic Profiles
Ontology highlight
ABSTRACT: We report high throughput transcriptomic profiling with RNA-Sequencing (RNA-Seq) to uncover network responses in human THP-1 monocytes treated with high glucose (HG). Examination of differential expression between normal and high glucose condition in THP1 cells.
Project description:Deep sequencing of single cell-derived genomic DNA and/or cDNAs brings novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-Seq requires multiple steps, including shearing the target DNA/RNA and following sequential enzymatic reactions, which result in consequent sample loss and stochastic variation at each step. Such variation may significantly affect the output from sequencing. We have found that a new technique of library preparation using hyperactive Tn5 transposase for the next-generation sequencer of Illumina's platform provided high-quality libraries from 100ng of short-length (average 700~800 bp) single-cell level cDNA. This new method reduced the number of steps in the protocol, which resulted in improved reproducibility and reduced variation among the specimens. Two methods of library preparation (sonication, tagmentation with hyperactive Tn5 transposase) were compared in the case of RNA-Seq for single-cell level cDNA. Technical triplicates were used.
Project description:Ribsome profiling analysis of mRNA translation in mouse cells under conditions of mTOR activiation or inhibition. embryonic fibroblasts from 4EBP1/2 p53 mutants treated with Torin1
Project description:We generated a genome wide map of instances where the long noncoding RNA, Tug1, binds to DNA in cultured mouse podocytes under normal glucose conditions using Chromatin-RNA Precipitation coupled with high throughput sequencing (ChIRP-Seq) 48 alternating (even, odd) biotynilated probes were designed to span the full length of Tug1 RNA. Chromatin was prepared from gluteraldehyde crosslinked nuclei from early passage podocytes. Chromatin extracts were duplicated with either even or odd probes. Duplicate samples for Input DNA, Even pulldown (PD) and Odd PD DNA was purified following incubation and supplied for Illumina sequencing by ArrayStar (Rockville, MD).
Project description:Human valvular endothelial cells were co-cultured with THP-1 monocytes in high glucose (33mM) or normal glucose (5mM) levels for 2 hours. Afterwards cells were lysed and total cellular RNA was extracted using TRIzol reagent.
Project description:HSPC harbor constitutively active antiviral blocks that can be induced by type I IFN in certain cell types such as THP-1 cells but not in the K562 cell line. In the effort to identify such factors we compared trascriptomes from HSPC, THP1 and K562 stimulated or not with type I IFN
Project description:Purpose: This study aimed to identify differentially expressed genes including alternative splice variants in embryonic ventricles following in utero caffeine treatment. Methods: Pregnant CD-1 mice were injected with 20 mg/kg of caffeine or vehicle control daily from embryonic day (E) 6.5-9.5. On E10.5, total RNA was isolated from embryonic ventricles and used for transcriptomic RNA sequencing with Illumina HiSeq 2000 (1X75bp). RNA-seq reads were aligned to the mouse genome (build mm10) with the Tophat for Illumina tool in the PSU galaxy platform. Counting and annotation of RNA-seq reads as well as alternative splicing analysis were performed with Partek Genomics Suite version 6.11. Differential expression of gene and transcript reads between treatments was analyzed with R package EdgeR. Genes/transcripts with false discovery rate (FDR) less than 0.05 and absolute fold change greater than 1.5 were considered as significant. Differentially expressed genes were defined as genes with altered expression at either gene or transcript level. Unique differentially expressed genes were identified by combining the results from annotations with the RefSeq Transcripts (2013-05-10) or Ensembl Transcripts release 71 databases. Results: Differential expression analysis revealed that 59 genes and 451 transcripts were significantly up-regulated, and 65 genes and 398 transcripts were down-regulated by prenatal caffeine treatment (fold change >1.5 or <-1.5; p-value with FDR<0.05). In total, 900 unique genes were identified to have altered expression either at the gene or transcription level. Further analysis with Partek GS revealed that 183 genes had abnormal alternative splicing at the exon level after in utero caffeine treatment. Conclusions: In utero caffeine exposure caused gene expression changes in embryonic ventricles and these changes may lead to long-term effects on cardiac morphology and function. mRNA profiles in E10.5 heart ventricles treated with caffeine were generated by deep sequencing (n=2 for vehicle, n=3 for caffeine), using Illumina HiSeq 2000.
Project description:Chromosomal structural mutations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural mutations, we analyzed a representative sampling of the major types of breast tumor samples for detailed structural mutations using paired-end tag sequencing of long-insert genomic DNA (DNA-PET) with matched transcriptome ascertainment by RNA-seq. Compared with other structural mutations, tandem duplications are enriched around partners of fusion transcripts and demarcate regions of high gene expression. Moreover tandem duplications appear to be early events in tumor evolution by facilitating subsequent downstream amplification and deletion of important adjacent cancer associated genes. In a detailed reconstruction of events in chr17, we found large unpaired-inversions connect a duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently co-amplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in human normal mammary epithelial cells. Finally, using in silico approaches, we determined that genes whose expression in breast tumors are associated with either poor or good clinical prognosis appear clustered together in segments of frequent amplification or deletion, suggesting that structural abnormalities induce the loss or gain of blocks of adjacent genes with oncogenic or growth suppressor function. These analyses suggest that structural mutations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously. RNA sequencing of four primary breast cancer RNA samples (SOLiD, Applied Biosystems).
Project description:In order to further explore the expression of lncrna in asthma, we used lipopolysaccharide (LPS) to activate human monocyte macrophage THP-1, and then used deep sequencing method to detect the expression of lncrna in activated and inactive THP1 cells. The results showed that there were different expression of lncrna in LPS activated and inactive THP1 cells
Project description:The CD40 gene, an important immune regulatory gene, is also expressed and functional on non-myeloid derived cells, many of which are targets for tissue specific autoimmune diseases, including d thyroid follicular cells in Graves’ disease (GD). Whether target tissue CD40 expression plays a role in autoimmune disease etiology has yet to be determined. Here we show for the first time, that target-tissue over-expression of CD40 plays a key role in the etiology of autoimmunity. Using a murine model of GD, we demonstrated that thyroidal CD40 over-expression augmented the production of thyroid specific antibodies, resulting in more severe experimental autoimmune Graves’ disease (EAGD), whereas deletion of thyroidal CD40 suppressed disease. Using transcriptome and immune-pathway analyses we showed that in both EAGD mouse thyroids and human primary thyrocytes, CD40 mediates this effect by activating downstream cytokines and chemokines, most notably IL-6. To translate these findings into therapy, we blocked IL-6 during EAGD induction in the setting of thyroidal CD40 over-expression, and showed decreased levels of TSHR stimulating antibodies and frequency of disease. We conclude that target tissue over-expression of CD40 plays a key role in the etiology of organ specific autoimmune disease. CD40 in Thyroid Autoimmunity: 1) Incubation of human thyroid cells with G28.5, a CD40 stimulating antibody, and purification of RNA, conversion to cDNA, measurement of mRNA expression using RNAseq. 2) Removal of thyroid tissues from CD40 over-expressing transgenic mice and wild type mice, purification of RNA, conversion to cDNA measurement of mRNA expression using RNAseq.