Transcription profiling of rat depolarization induced gene from primary cortical neuron
Ontology highlight
ABSTRACT: Activation of neurons is one of the fundamental events for the functioning of nervous system. Neuronal activation relays information to next neurons. On the other hand, the activated neurons themselves are also influenced by neuronal activation. Depending on the type and condition of neuronal activation, these activated neurons change their gene expressions, thereby being able to process information more or less efficiently. We applied the microarray technology to identify hither-to-uncharacterized as activity-dependent genes. Especially, we screened the transcription factors, because early changes in the transcription factors should result in alterations of gene expression profiles and subsequent neuronal properties. Experiment Overall Design: Rat primary cortical neurons with or without KCl treatment were selected for RNA extraction and hybridization on Affymetrix microarrays. To identify the genes whose expression was induced by depolarization, we first compared gene expression profiles in control vs. 4 hr after KCl (25 mM) treated cortical neurons using Affymetrix Genechips specified for neurobiology. All four hybridizations were analyzed for correlation accuracy between the replicates of the same treatments .Control replicates (control 1, 2) KCl-treated replicates (KCl 1, 2)
Project description:We search for developmental changes specific to humans by examining gene expression profiles in the human, chimpanzee and rhesus macaque prefrontal and cerebellar cortex. In both brain regions, developmental patterns were more evolved in humans than in chimpanzees. The major human specific genes in prefrontal cortex was enriched in neuronal functions and regulated by several transcription factors, which were previously implicated in regulation of neuronal functions. To confirm neuronal function of the human prefrontal cortex specific genes, we identifed response genes upon neuronal activation in mouse cortical neurons. Our results show that human specific genes are enriched in the response genes upon neuronal activation, implying the function of human prefrontal cortex specific genes in synaptic development. The cortical neurons from E15 mouse were isolated and cultured. We then exposed neurons to bicuculline (Bic), or potassium chloride (KCl), or without treatment. The cultured neurons under each group were hybridized to Agilent whole mouse genome oligo microarray (4x44k).
Project description:This experiment comprises RNA-seq data used to study evolutionary differences between humans and mice in neuronal activity-dependent transcriptional responses. Activity-dependent transcriptional responses in developing human stem cell-derived cortical neurons were compared with those induced in developing primary- or stem cell-derived mouse cortical neurons 4 hours after KCl-induced membrane depolarisation. Activity-dependent transcriptional responses were also measured in aneuploid mouse neurons carrying human chromosome 21, allowing study of the regulation of Hsa21 genes, plus their mouse orthologs, side-by-side in the same cellular environment of a mouse primary neuron.
Project description:Necdin, a pleiotropic protein expressed predominantly in postmitotic neurons of mammals, regulates neuronal development and survival by interacting with various regulatory proteins. To understand a novel function of necdin, we analyzed gene expression profile of primary cortical neurons prepared from necdin-null mice at embryonic day 14.5. Wild-type and necdin-null cortical cells were prepared from mice at embryonic day 14.5. These cells were incubated in Neurobasal medium supplemented with B27 and differentiated into neurons for 4 days (>97% MAP2-positive postmitotic neurons). Three mice per genotype were used for analysis.
Project description:Astrocytes are implicated in neuronal development, particularly excitatory synaptogenesis, but their genome-wide impact is unclear. Using cell-type specific RNA-seq we show that cortical astrocytes induce widespread transcriptomic changes in developing cortical neurons. Rat cortical neurons were maintained in the presence or absence of mouse astrocytes, RNA-seq performed, and mixed-species RNA-seq reads sorted according to species. Cultures were also treated with TTX to abolish neuronal firing activity, to investigate the effects of the presence or absence activity-dependent signalling.
Project description:This SuperSeries is composed of the following subset Series: GSE29138: The mRNA expression patterns in macaque brains from prenatal to neonatal GSE29139: Identification of response genes upon neuronal activation in mouse cortical neurons Refer to individual Series
Project description:miRNA microarray profiling of primary cortical neurons exposed to 4h oxygen and glucose deprivation (OGD) in vitro. RNA samples collected at 8h post-OGD terminaion. miRNAs were also profiled in mice exposed to 3- vessel occlusion model of stroke. RNA samples collected from contralateral (control) and ipsilateral (infarct) sides of the brain following 24h of reperfusion. Comparison of control and ischemic samples across 3 biological replicates for both in vitro and in vivo samples. In vitro cultures consisted of primary cortical neurons derived from E17 rat Wistar embryos. In vivo samples were obtained from C57bl/6 mice exposed to three-vessel occlusion.
Project description:Astrocytes are implicated in neuronal development, particularly excitatory synaptogenesis, but their genome-wide impact is unclear. Using cell-type specific ChIP-seq we show that cortical astrocytes induce widespread changes in developing cortical neurons in histone marks associated with active open chromatin and repressed/condensed chromatin. Rat cortical neurons were maintained in the presence or absence of mouse astrocytes, ChIP-seq performed, and mixed-species ChIP-seq reads sorted according to species.
Project description:Kabuki Syndrome (KS) is a multisystemic rare disorder, characterized by growth delay, distinctive facial features, intellectual disability, and rarely autism spectrum disorder. This condition is mostly caused by de novo mutations of KMT2D, encoding a catalytic subunit of the COMPASS complex involved in enhancer regulation. KMT2D catalyzes the deposition of histone-3-lysine-4 mono-methyl (H3K4Me1) that marks active and poised enhancers. To assess the impact of KMT2D mutations in the chromatin landscape of KS tissues, we have generated patient-derived induced pluripotent stem cells (iPSC), which we further differentiated into neural crest stem cells (NCSC), mesenchymal stem cells (MSC) and cortical neurons (iN). In addition, we further collected blood samples from 5 additional KS patients. To complete our disease modeling cohort we generated an isogenic KMT2D mutant line from human embryonic stem cells, which we differentiated into neural precursor and mature neurons. Micro-electrode-array (MEA)-based neural network analysis of KS iNs revealed an altered pattern of spontaneous network-bursts in a Kabuki-specific pattern. RNA-seq profiling was performed to relate this aberrant MEA pattern to transcriptional dysregulations, revealing that dysregulated genes were enriched for neuronal functions, such as ion channels, synapse activity, and electrophysiological activity. Here we show that KMT2D haploinsufficiency tends to heavily affect the transcriptome of cortical neurons and differentiated tissues while sparing multipotent states, suggesting that KMT2D has a most prevalent role in terminally differentiated cell and activate transcriptional circuitry unique to each cell type. Moreover, thorough profiling of H3K4Me1 unveiled the almost complete uncoupling between this chromatin mark and the regulatory effects of KMT2D on transcription, which is instead reflected by a defect of H3K27Ac. By integrating RNA-seq with ChIP-seq data we defined TEAD and REST as the master effectors of KMT2D haploinsufficiency. Also, we identified a subset of genes whose regulation is controlled by the balance between KMT2D and EZH2 dosage. Finally, we identified the bona fide direct targets of KMT2D in healthy and KS mature cortical neurons and TEAD2 as the main proxy of KMT2D dysregulation in KS. Overall, our study provides the transcriptional and epigenomic characterization of patient-derived tissues as well as iPSCs and differentiated disease-relevant cell types, as well as the identification of KMT2D direct target in cortical neurons, together with the identification of a neuronal phenotype of the spontaneous electrical activity.
Project description:In this study, we sought to identify the mRNAs associated to FMRP protein in mouse cortical neuron using a cross linking immunoprecipitation and microarray (CLIP-microarray). The mRNAs crosslinked at 254 nm to FMRP in mouse cortical neurons cultured 8 days in vitro (8 DIV) were immunoprecipitated with H120 anti-FMRP (Santa Cruz) and reverse transcribed to labeled cDNAs with Ovation Pico WTA system V2 (Nugen) and hybridized on Mouse Gene 1.0ST (Affymetrix) We analyzed total RNA (Input) and FMRP-CLIPed RNA (Clip) from 10 primary cortical neuron mouse cultures (5 Wt Input, 5 FMR1-KO Input, 5 Wt Clip, 5 FMR1-KO Clip). Array data was processed by Affymetrix Exon Array Computational Tool. No technical replicates were performed.
Project description:The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons, cell surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFNγ, Nrtn and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo. We prepared E16 cortical neuron, E13 cortical precursor and co-cultured E16 cortical neuron and E13 cortical precursor cultures from three independent biological replicates.