Transcription profiling of mouse lung from wild type vs. CFTR knockout to identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo,
Ontology highlight
ABSTRACT: Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo, microarray analyses of lung mRNAs were performed on whole lung tissue from mice lacking (CFTR(-)) or expressing mouse CFTR (CFTR(+)). Whereas the histology of lungs from CFTR(-) and CFTR(+) mice was indistinguishable, statistically significant increases in the relative abundance of 29 and decreases in 25 RNAs were identified by RNA microarray analysis. Of RNAs whose expression was consistently altered by the absence of CFTR, functional classes of genes influencing gene transcription, inflammation, intracellular trafficking, signal transduction, and ion transport were identified. RNAs encoding the transcription factor CCAAT enhancer-binding protein (CEBP) delta and interleukin (IL) 1beta, both known to regulate CFTR expression, were induced, perhaps indicating adaptation to the lack of CFTR. RNAs mediating lung inflammation including calgranulin-S100 family members, IL-1beta and IL-4, were increased. Likewise, expression of several membrane transport proteins that interact directly with CFTR were increased, suggesting that CFTR-protein complexes initiate genomic responses. Absence of CFTR influenced the expression of genes modulating diverse pulmonary cell functions that may ameliorate or contribute to the pathogenesis of CF. Lungs from sex-matched littermates at 3, 6, and 11 weeks of agewere carefully dissected and the conducting airways and mediastinal structures removed.
Project description:Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo, microarray analyses of lung mRNAs were performed on whole lung tissue from mice lacking (CFTR(-)) or expressing mouse CFTR (CFTR(+)). Whereas the histology of lungs from CFTR(-) and CFTR(+) mice was indistinguishable, statistically significant increases in the relative abundance of 29 and decreases in 25 RNAs were identified by RNA microarray analysis. Of RNAs whose expression was consistently altered by the absence of CFTR, functional classes of genes influencing gene transcription, inflammation, intracellular trafficking, signal transduction, and ion transport were identified. RNAs encoding the transcription factor CCAAT enhancer-binding protein (CEBP) delta and interleukin (IL) 1beta, both known to regulate CFTR expression, were induced, perhaps indicating adaptation to the lack of CFTR. RNAs mediating lung inflammation including calgranulin-S100 family members, IL-1beta and IL-4, were increased. Likewise, expression of several membrane transport proteins that interact directly with CFTR were increased, suggesting that CFTR-protein complexes initiate genomic responses. Absence of CFTR influenced the expression of genes modulating diverse pulmonary cell functions that may ameliorate or contribute to the pathogenesis of CF. Keywords: Genotype comparison
Project description:Cystic fibrosis (CF) is a life-shortening genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficit in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, we describe loss of small pulmonary blood vessels in CF patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear stress-dependent mechanism of endothelial barrier failure in CF involving calcium-permeable mechanosensitive channel TRPV4. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another calcium-permeable mechanosensitive channel involved in angiogenesis and wound repair, and further exacerbates loss of small pulmonary blood vessels. We show that CFTR directly interacts with PIEZO1 and enhances its function, and that CFTR deficiency reduces PIEZO1 activity. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, M-NM-^TF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-M-NM-^TF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation. 12 samples of Calu-3 cells representing different interventions.
Project description:Airways conduct gases to the lung and are disease sites of asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells by proximodistal location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq' , combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that characterize cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.
Project description:The purpose of this study was to explore baseline expression of miRNome in Cystic Fibrosis Bronchial Epithelial (CFBE41o-) cells stably transfected with wild type (WT) Cystic Fibrosis Transmembrane Conductance regulator (CFTR) and F508del-CFTR. To fulfill this goal miRNA sequencing was done to see miRNA landscape in CFBE41o- Cells with homozygous F508del mutated CFTR and in CFBE41o- Cells with homozygous WT-CFTR, without any treatment condition.
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, ΔF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-ΔF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation.
Project description:The purpose of this study was to explore miRNA mediated Transforming Growth Factor (TGF)-β1 regulation of F508del Cystic Fibrosis Transmembrane Conductance regulator (CFTR). To fulfill this goal, miRNA sequencing was done to see miRNA landscape in Cystic Fibrosis Bronchial Epithelial (CFBE) Cells with homozygous WT-CFTR and F508del mutated CFTR in response to TGFβ1 treatment.
Project description:Cystic fibrosis bronchial epithelial (CFBE41o-ΔF508) cells subjected to 23 bio-active small molecules including vehicle controls, at low temperature and untreated cells. Untreated Cystic fibrosis bronchial epithelial cells (CFBE41o−CFTR) are also included.
Project description:The occurrence of attention deficit-hyperactivity disorder (ADHD) symptoms in patients with cystic fibrosis (CF) is substantially higher than in the general population, and the cystic fibrosis transmembrane conductance regulator (CFTR) is the pathogenic gene of cystic fibrosis, suggesting the potentially critical role of CFTR in ADHD. Here, we identified three heterozygous missense mutations (p.E217G, p.F316L and p.T1220I) in CFTR, segregating with ADHD in two consanguineous families with 6 affected individuals. Using the zebrafish model, we found that the cftr knockout line displays hyperactive, impulsive-like, and attention deficit-like behaviors, reminiscent of human ADHD patients. Single-cell RNA-seq of 7 dpf larvae identified clusters of neuron cells that were sensitive to cftr, especially, the number of dopaminergic neuron cells decreased in the cftr mutant fish. Bulk RNA-seq and proteomic analysis at the early gastrulation period showed that the expression of nerve system genes was abnormal. Notably, we tried to use CFTR activitors Lumacaftor (VX-809) and Ivacaftor (VX-770) to treat the ADHD zebrafish model (established by per1b mutant), and found enhanced CFTR activity could rescue the ADHD-like behaviors. In brief, we uncover the role of CFTR in ADHD pathogenesis and explore novel diagnoses and therapy for ADHD by targeting CFTR.
Project description:Cystic fibrosis (CF)-related diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting ~35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of b cell CFTR deletion, and normal and CF human pancreas and islets. Specific deletion of CFTR from murine b cells did not affect b cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein/electrical activity was not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion with few changes in key islet-regulatory transcripts. Furthermore, ~65% of b cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is not caused by intrinsic islet dysfunction from CFTR mutation, but rather, by b cell loss and intra-islet inflammation in the setting of a complex pleiotropic disease