Transcriptomics

Dataset Information

0

A revised airway epithelial hierarchy includes CFTR-expressing ionocytes


ABSTRACT: Airways conduct gases to the lung and are disease sites of asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells by proximodistal location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq' , combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that characterize cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.

ORGANISM(S): Mus musculus

PROVIDER: GSE103354 | GEO | 2018/07/30

REPOSITORIES: GEO

Similar Datasets

2023-08-01 | GSE233654 | GEO
2018-08-01 | GSE102580 | GEO
2022-04-12 | GSE188904 | GEO
2023-03-02 | GSE203007 | GEO
2011-04-30 | E-MEXP-436 | biostudies-arrayexpress
2020-12-16 | GSE160673 | GEO
2020-12-16 | GSE160674 | GEO
2007-11-27 | E-GEOD-4513 | biostudies-arrayexpress
2012-09-04 | E-GEOD-38956 | biostudies-arrayexpress
2011-01-07 | E-GEOD-26482 | biostudies-arrayexpress