Comparative expression data from HBVP (human brain vascular pericytes) and human MSC (mesenchymal stem cells)
Ontology highlight
ABSTRACT: Pericytes and mesenchymal stem cells (MSC) are ontogenically related, and in fact no phenotypic differences were observed by flow cytometry using a panel of surface antigen markers. Global gene expression profiles of human pericytes and MSC revealed that 43 genes were expressed more than 10 fold in pericytes as compared to MSC. Cells were cultured in 24-w plates in complete medium for 24h in biological triplicates
Project description:Identification of TLR4 as one of the most abundant RNA species in pericytes with respect to MSC, and corroboration of TLR4 expression on the cell surface, led us to obtain a comprehensive overview of the expression program of lipopolysaccharide (LPS) stimulated pericytes. Microarray analyisis demonstrated the significant upregulation of 76 annotated genes including transcripts for adhesion molecules, inflammation mediators, pro-angiogenic factors, transcription factors and anti-apoptotic proteins. Cells were cultured in 24-w plates in complete medium for 24h before stimulation with 1 microgram/ml LPS for 4h. Samples are biological triplicates.
Project description:Pericytes and mesenchymal stem cells (MSC) are ontogenically related, and in fact no phenotypic differences were observed by flow cytometry using a panel of surface antigen markers. Global gene expression profiles of human pericytes and MSC revealed that 43 genes were expressed more than 10 fold in pericytes as compared to MSC.
Project description:The objective of this array was to determine the global gene expression profile of human placental pericytes for comparison with other publicly available arrays of pericytes and mesenchymal stromal cells isolated from various human tissues. Pericytes are critical cellular components of the microvasculature that play a major role in vascular development and pathologies, yet their study has been hindered by lack of a standardized method for their isolation and growth. Here we report a method for culturing human pericytes from a readily available tissue source, placenta, and provide a thorough characterization of resultant cell populations. We developed an optimized protocol for obtaining pericytes by outgrowth from microvessel fragments recovered after enzymatic digestion of human placental tissue. We characterized outgrowth populations by immunostaining, by gene expression analysis, and by functional evaluation of cells implanted in vivo. Our approach yields human pericytes that may be serially expanded in culture and that uniformly express the cellular markers NG2, CD90, CD146, α-SMA, and PDGFR-β, but lack markers of smooth muscle cells, endothelial cells, and leukocytes. When co-implanted with human endothelial cells into C.B-17 SCID/bg mice, human pericytes invest and stabilize developing human endothelial cell-lined microvessels. We conclude that our method for culturing pericytes from human placenta results in the expansion of functional pericytes that may be used to study a variety of questions related to vascular biology. Total RNA from three different pericyte isolations at subculture 1 was collected and examined for relative gene expression.
Project description:Mesenchymal stromal cells (MSCs) are cultured cells that can give rise to mature mesenchymal cells under appropriate conditions, and secrete a number of biologically relevant molecules that may play an important role in regenerative medicine. Evidence indicates that pericytes (PCs) correspond to mesenchymal stem cells in vivo and can give rise to MSCs when cultured, but a comparison between the gene expression profiles of cultured PCs (cPCs) and MSCs is lacking. We have devised a novel methodology to isolate PCs from human adipose tissue, and compared cPCs to MSCs obtained through traditional methods. Freshly isolated PCs expressed CD34, CD140b, and CD271 on their surface, but not CD146. Both MSCs and cPCs were able to differentiate along mesenchymal pathways in vitro, displayed an essentially identical surface immunophenotype, and exhibited the ability to suppress CD3+ lymphocyte proliferation in vitro. Microarray expression data of cPCs and MSCs formed a single cluster among other cell types. Further analyses showed that the gene expression profiles of cPCs and MSCs are extremely similar, although MSCs differentially expressed endothelial cell-specific transcripts. These results confirm, using the power of transcriptomic analysis, that PCs give rise to MSCs, and suggest that low levels of endothelial cells may persist in MSC cultures established using traditional protocols. Highly purified human adipose-tissue pericytes (AT3G5Cs) were isolated based on the expression of the antigen detected by the 3G5 antibody, lack of expression of CD31, and ability to adhere to tissue-cultured plastic whithin a short time. The in vitro properties of cultured AT3G5Cs were compared to those of adipose tissue mesenchymal stromal cells (ATMSCs) obtained through traditional methods. Gene expression profiles of cultured AT3G5Cs (n = 3 different biological samples) and ATMSCs (n = 3 different biological samples) were compared to each other by statistical analyses. Gene expression profiles of cultured AT3G5Cs and ATMSCs were compared to those of other cell types by clustering analyses.
Project description:Mesenchymal stromal cells (MSC) are ideal candidates for cell therapies, due to their immune-regulatory and regenerative properties. We have previously reported that lung-derived MSC are tissue-resident cells with lung-specific properties compared to bone marrow-derived MSC. Assessing relevant molecular differences between lung-MSC and bone marrow-MSC is important, given that such differences may impact their behavior and potential therapeutic use. Here, we present an in-depth mass spectrometry (MS) based strategy to investigate the proteomes of lung-MSC and bone marrow-MSC. The MS-strategy relies on label free quantitative data-independent acquisition (DIA) analysis and targeted data analysis using a MSC specific spectral library. We identified several significantly differentially expressed proteins between lung-MSC and bone marrow-MSC within the cell layer (352 proteins) and in the conditioned medium (49 proteins). Bioinformatics analysis revealed differences in regulation of cell proliferation, which was functionally confirmed by decreasing proliferation rate through Cytochrome P450 stimulation. Our study reveals important tissue-specific differences within proteome and matrisome profiles between lung- and bone marrow-derived MSC that may influence their behavior and affect the clinical outcome when used for cell-therapy.
Project description:Direct conversion of pericytes (PCs) or mouse embryonic fibroblasts (MEFs) into induced oligodendrocytes (iOPCs) by ectopic expression of Olig2, Sox10 and Nkx6.2 was assessed by transcriptome profiling (RNA-seq). Samples were collected before and after direct conversion (for PCs at 3 different time points/passages - p5, p15 and p25)
Project description:Background. Ageing is one of the main risk factors of cardiovascular disease. Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. In the heart, the consequences of ageing on cardiac pericytes are unknown. Methods. In this study, we have combined single nucleus RNA sequencing and histological analysis to determine the effects of ageing on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 loss of function and finally have perfomed pericytes-fibroblasts co-culture studies to understand the effect of RGS5 loss of function in pericytes on the neighbouring fibroblasts. Results. We showed that ageing reduces the pericyte area and coverage. Single nucleus RNA sequencing analysis further revealed that the expression of the Regulator of G protein signalling 5 (Rgs5) is reduced in old cardiac pericytes. In vivo and in vitro studies showed that the deletion of RGS5 induces morphological changes and a pro-fibrotic gene expression signature characterized by the expression of different extracellular matrix components and growth factors like TGFB2 and PDGFB in pericytes. Indeed, the culture of fibroblasts with the supernatant of RGS5 deficient pericytes induced their activation characterized by the increased expression of α smooth muscle actin in a TFGβ2 dependent mechanism. Conclusions. Our results identify RGS5 as a crucial regulator of pericyte function during cardiac ageing. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac ageing.
Project description:Direct conversion of pericytes (PCs) into induced oligodendrocytes (iOPCs) by ectopic expression of Olig2 and Sox10 (2F) was assessed by chromatin accessibility profiling (by ATAC-seq). Samples were collected before and after direct conversion (at 3 different time points/passages - p5, p15 and p25).
Project description:To analyze the changes induced in MSC transcriptome by activated T cells, MSC were co-cultured in transwell with anti CD3/CD28 activated T cells for 48 hrs before RNA extraction IFNγ-induced plasticity of mesenchymal stem cells is regulated by STATs through inhibition of mTOR and TGFβ pathways. Vigo T, Procaccini C, Ferrara G, Baranzini S, Oksenberg J, Diaspro A, Kerlero de Rosbo N, Uccella A. The expression of MSC co-cultured with activated T cells ( two replicates) were compared to that of naive MSC (3 replicates)
Project description:Mesenchymal stem cells (MSC) have emerged as potent therapeutic tool for a number of pathologies, including immune ones. However, unwelcome effects of MSC on the blood coagulation were revealed in some cases, which require more in-depth analysis. In this study, we explored the trombotic properties of human MSC from umbilical cord. We revealed strong procoagulant effects of umbilical cord MSC toward human and rat whole blood and platelets-free plasma using rotational thromboelastometry and thrombodynamics tests. The similar potentiation of clotting was demonstrated for MSC-derived extracellular vesicles (EV). In order to suggest approaches to avoid unwanted effects we studied the impact of heparin supplement on MSC/EV procoagulation properties. We found that therapeutic doses of unfractionated heparin injected in the patient's blood (administered in vivo) did not abrogate the procoagulant properties of MSC. Mass-spectrometry analysis of proteins of MSC and EV involved in coagulation-associated pathways was used to evaluate mechanisms of protrombotic effects.