S. paradoxus wt strains: glucose vs. xylulose growth
Ontology highlight
ABSTRACT: Transcription profile of 12 wt S.paradoxus strains originating from diverse geographical origins and natural habitats. Transcription profiles in two conditioins were compared: growth on glucose and growth on the naturally rare pentose sugar xylulose. Two condition experiment, growth on glucose and on xylulose, 12 wt S.paradoxus strains
Project description:Transcription profile of 12 wt S.cerevisiae strains originating from diverse geographical origins and natural habitats. Transcription profiles in two conditioins were compared: growth on glucose and growth on the naturally rare pentose sugar xylulose. Two condition experiment, growth on glucose and on xylulose, 12 wt S. cerevisiae strains, two biological replicates
Project description:Transcription profile of 12 wt S.paradoxus strains originating from diverse geographical origins and natural habitats. Transcription profiles in two conditioins were compared: growth on glucose and growth on the naturally rare pentose sugar xylulose.
Project description:Transcription profile of 12 wt S.cerevisiae strains originating from diverse geographical origins and natural habitats. Transcription profiles in two conditioins were compared: growth on glucose and growth on the naturally rare pentose sugar xylulose.
Project description:Cells constantly adapt to changes in their environment. In the majority of cases, the environment shifts between conditions that were previously encountered during the course of evolution, thus enabling evolutionary-programmed responses. In rare cases, however, cells may encounter a new environment to which a novel response is required. To characterize the first steps in adaptation to a novel condition, we studied budding yeast growth on xylulose, a sugar that is very rarely found in the wild. We previously reported that growth on xylulose induces the expression of amino-acid biosynthesis genes, in multiple natural yeast isolates. This induction occurs despite the presence of amino acids in the growth medium and is a unique response to xylulose, not triggered by any of the naturally available carbon sources tested. Propagating these strains for ~300 generations on xylulose significantly improved their growth rate. Notably, the most significant change in gene expression was the loss of amino acid biosynthesis gene induction. Furthermore, the reduction in amino-acid biosynthesis gene expression on xylulose was strongly correlated with the improvement in growth rate, suggesting that internal depletion of amino-acids presented the major bottleneck limiting growth in xylulose. We discuss the possible implications of our results for explaining how cells maintain the balance between supply and demand of amino acids during growth in evolutionary âfamiliarâ vs. ânovelâ conditions. mRNA profiles of 12 wt S. cerevisiae strains grown on either YPD or YP-xylulose, before and after 300 generations evolution on YP-xylulose
Project description:The ascomycetes Saccharomyces cerevisiae, Candida albicans and Scheffersomyces stipitis metabolize the pentose sugar xylose very differently. S. cerevisiae fails to grow on xylose, while C. albicans can grow, and S. stipitis can both grow and ferment xylose to ethanol. However, all three species contain highly similar genes that encode xylose reductase and xylitol dehydrogenase required to convert xylose to xylulose, on which all three fungi grow. We have created C. albicans strains deleted for either or both the xylose reductase gene GRE3, and the xylitol dehydrogenase gene XYL2. As expected, all the mutant strains cannot grow on xylose, while the gre3 mutant can grow on xylitol. The gre3 and xyl2 mutants are complemented efficiently by the XYL1 and XYL2 from S. stipitis respectively. Intriguingly, the S. cerevisiae GRE3 and SOR1 genes can complement the gre3 and xyl2 mutants respectively, showing that S. cerevisiae contains the enzymatic capacity for converting xylose to xylulose. In addition, the gre3 xyl2 double mutant is effectively rescued by the xylose isomerase (XI) gene of either Piromyces or Orpinomyces, suggesting that the XI provides an alternative to the missing oxido-reductase functions in the mutant required for the xylose-xylulose conversion. Overall this work establishes that C. albicans strains engineered to lack essential steps for xylose metabolism provide a platform for the analysis of xylose metabolism enzymes from a variety of species, and confirms that S. cerevisiae has the genetic potential to convert xylose to xylulose, although non-engineered strains cannot proliferate on xylose as the sole carbon source. Transcription profile of cells in xylose compared to glucose. Two sets: Candida albicans, 1 condition ; Saccharomyces cerevisiae 2 conditions / in xylose (SX) or no sugar (S) (replicates with dye-swap)
Project description:The extent to which carbon flux is directed towards fermentation vs. respiration differs between cell types and environmental conditions. Understanding the basic cellular processes governing carbon flux is challenged by the complexity of the metabolic and regulatory networks. To reveal the genetic basis for natural diversity in channeling carbon flux, we applied Quantitative Trait Loci analysis by phenotyping and genotyping hundreds of individual F2 segregants of budding yeast that differ in their capacity to ferment the pentose sugar xylulose. Causal alleles were mapped to the RXT3 and PHO23 genes, two components of the large Rpd3 histone deacetylation complex. We show that these allelic variants modulate the expression of SNF1/AMPK-dependent respiratory genes. Our results suggest that over close evolutionary distances, diversification of carbon flow is driven by changes in global regulators, rather than adaptation of specific metabolic nodes. Such regulators may improve the ability to direct metabolic fluxes for biotechnological applications. mRNA profiles of S. cerevisiae strain BY4741 with either the RXT3 or PHO23 genes either deleted, replaced by S. cerevisiae T73 allele or replaced by S. cerevisiae PHO23 allele
Project description:The ascomycetes Saccharomyces cerevisiae, Candida albicans and Scheffersomyces stipitis metabolize the pentose sugar xylose very differently. S. cerevisiae fails to grow on xylose, while C. albicans can grow, and S. stipitis can both grow and ferment xylose to ethanol. However, all three species contain highly similar genes that encode xylose reductase and xylitol dehydrogenase required to convert xylose to xylulose, on which all three fungi grow. We have created C. albicans strains deleted for either or both the xylose reductase gene GRE3, and the xylitol dehydrogenase gene XYL2. As expected, all the mutant strains cannot grow on xylose, while the gre3 mutant can grow on xylitol. The gre3 and xyl2 mutants are complemented efficiently by the XYL1 and XYL2 from S. stipitis respectively. Intriguingly, the S. cerevisiae GRE3 and SOR1 genes can complement the gre3 and xyl2 mutants respectively, showing that S. cerevisiae contains the enzymatic capacity for converting xylose to xylulose. In addition, the gre3 xyl2 double mutant is effectively rescued by the xylose isomerase (XI) gene of either Piromyces or Orpinomyces, suggesting that the XI provides an alternative to the missing oxido-reductase functions in the mutant required for the xylose-xylulose conversion. Overall this work establishes that C. albicans strains engineered to lack essential steps for xylose metabolism provide a platform for the analysis of xylose metabolism enzymes from a variety of species, and confirms that S. cerevisiae has the genetic potential to convert xylose to xylulose, although non-engineered strains cannot proliferate on xylose as the sole carbon source.
Project description:Cells constantly adapt to changes in their environment. In the majority of cases, the environment shifts between conditions that were previously encountered during the course of evolution, thus enabling evolutionary-programmed responses. In rare cases, however, cells may encounter a new environment to which a novel response is required. To characterize the first steps in adaptation to a novel condition, we studied budding yeast growth on xylulose, a sugar that is very rarely found in the wild. We previously reported that growth on xylulose induces the expression of amino-acid biosynthesis genes, in multiple natural yeast isolates. This induction occurs despite the presence of amino acids in the growth medium and is a unique response to xylulose, not triggered by any of the naturally available carbon sources tested. Propagating these strains for ~300 generations on xylulose significantly improved their growth rate. Notably, the most significant change in gene expression was the loss of amino acid biosynthesis gene induction. Furthermore, the reduction in amino-acid biosynthesis gene expression on xylulose was strongly correlated with the improvement in growth rate, suggesting that internal depletion of amino-acids presented the major bottleneck limiting growth in xylulose. We discuss the possible implications of our results for explaining how cells maintain the balance between supply and demand of amino acids during growth in evolutionary ‘familiar’ vs. ‘novel’ conditions.