Genes related to allergen avoidance in allergic rhinitis mouse model
Ontology highlight
ABSTRACT: Allergen exposure was thought to play a critical role in the etiology of AR. And allergen avoidance, the practice of avoiding exposure to allergens, has been generally advised as the management of AR. However, the effect is uncertain and the underlying mechanism is far from known. We used gene expression microarrays to identify genes differentially regulated by allergen avoidance in allergic rhinitis mouse model. Affymetrix Mouse Gene 1.0 ST arrays were used to identify the expression profiling of nasal mucosa in three groups of mice: (1) mice sensitized and challenged with saline (control group); (2) mice sensitized and challenged with ovalbumin (OVA) and sacrificed 2 hours after the last challenge (OVA group); (3) mice sensitized and challenged with OVA and sacrificed 4 weeks after the last challenge (4w-after group).
Project description:Expression microarrays identified 119 genes that were significantly differentially expressed in the epithelium of WT and M-NM-26 KO mice after saline or chronic allergen challenge. PAM clustering revealed two interesting clusters (6 and 8) that we had not identified in previous comparisons by whole lung microarrays. Cluster 6 genes were low at baseline in both WT and M-NM-26 KO mice and were increased in WT but not in M-NM-26 KO mice after chronic allergen challenge such as Mcpt1. Cluster 8 genes were increased at baseline in M-NM-26 KO mice, and included 6 mast cell related genes (cma1, mcpt4, cpa3, mcpt6, tpsab1, il1rl1). The most informative differentially expressed genes identified in microarrays of the epithelial microenvironment were not epithelial genes, but mast cell genes. Control and beta6 ko mice (wt-S (4), wt-OVA (4), ko-S (4), ko-OVA (4)) were sensitized and challenged with OVA or saline, airway epithelium were brush-harvested.
Project description:Mechanisms by which regulatory T (Treg) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the interleukin-4 receptor alpha chain (IL-4Rα-R576) biases induced Treg (iTreg) cells towards a T helper 17 (TH17) cell fate. This skewing reflects the recruitment by IL-4Rα-R576 of the adaptor protein growth factor receptor-bound protein 2 (GRB2), which drives IL-17 expression by an extracellular signal-regulated kinase-, IL-6- and STAT3-dependent mechanism. We showed that the IL-4Rα-R576 mutation elicits TH17 airway responses in vivo, in a house dust mite (HDM)- or ovalbumin (OVA)-driven model of airway inflammation in the mice carry the IL-4Rα-R576 mutation (Il4raR576 mice). Treg cell-specific deletion of genes encoding IL-6Rα or the master TH17 cell regulator Retinoid-related Orphan Receptor γt (RORγt), but not IL-4 and IL-13, protected mice against exacerbated airway inflammation induced by IL-4Rα--576. Analysis of lung tissue Treg cells revealed that the expression of IL-17 and the TH17 cell-associated chemokine receptor CCR6 was largely overlapping and highly enriched in Treg and conventional T (Tconv) cells of allergen-treated Il4raR576 mice. To further characterize the subset of IL-17 producing Foxp3+ Treg in the lung of OVA-treated mice we utilized CCR6 as a marker of Treg cells committed towards the TH17 cell lineage to examine their functional, epigenetic and transcriptional profiles. CCR6+Foxp3EGFP+ Treg cells isolated from OVA-sensitized and challenged Il4raR576 mice, by FACS (Fluorescence Activated Cell Sorting) exhibited decreased methylation of the Foxp3 CNS2 locus comparing to CCR6âFoxp3EGFP+ Treg cells from same animals, indicative of decreased stability. They also exhibited profoundly decreased suppressive function as compared to CCR6â WT and CCR6â Il4raR576 counterparts. Transcriptional profiling of CCR6+Foxp3EGFP+ Treg cells revealed increased relative expression in CCR6+ Il4raR576 Treg cells of genes associated with a TH17 cell signature, including Rorc, Ccr6, Il23r, Il17a, Il17f, Il1r1, Nr1d1, Cstl, and Ahr comparing to CCR6âFoxp3EGFP+ Treg cells from same animals. Three CCR6+Foxp3EGFP+ Il4raR576 replicates and four CCR6âFoxp3EGFP+ Il4raR576 Treg replicates (controls) were sampled
Project description:Resiquimod is a nucleoside analog belonging to the imidazoquinoline family of compounds which is known to signal through Toll-like receptor 7. Resiquimod treatment has been demonstrated to inhibit the development of allergen induced asthma in experimental models. Despite this demonstrated effectiveness, little is known about the molecular events responsible for this effect. The aim of the present study was to elucidate the molecular processes which were altered following resiquimod treatment and antigen challenge in a mouse model of allergic asthma. Employing microarray analysis, we have characterized the 'asthmatic' transcriptome of the murine lung and determined that it includes genes involved in: the control of cell cycle progression, airway remodelling, the complement and coagulation cascades, and chemokine signalling. We have demonstrated that systemic resiquimod administration resulted in the recruitment of NK cells to the lungs of the mice, although no causal relationship between NK cell recruitment and treatment efficacy was found. Furthermore, results of our studies demonstrated that resiquimod treatment resulted in the normalization of the expression of genes involved with airway remodelling and chemokine signalling, and in the modulation of the expression of genes including cytokines and chemokines, adhesion molecules, and B-cell related genes, involved in several aspects of immune function and antigen presentation. Overall, our findings identified several genes, important in the development of asthma pathology, that were normalized following resiquimod treatment thus improving our understanding of the molecular consequences of resiquimod treatment in the lung milieu. Experiment Overall Design: A total of 18 samples, from 6 sets of biological replicates, were analyzed. 9 A/J and 9 C57BL/6 mice were divided into three equal groups. All animals were sensitized to ovalbumin, one group received PBS aerosol challenges, the other two received 1% ovalbumin aerosol challenges. Of the two ovalbumin challenged groups, one recieved resiquimod 24hours before each challenge.
Project description:To determine the differential expression of miRNAs in the lungs of mice subjected to a model of allergic airways disease and non-allergic and steroid-treated control animals. Total lung RNA was collected from mice sensitised and challenged with PBS or OVA with or without DEX treatment at day 16 and miRNA microarrays performed.
Project description:The goal of this project was to identify strain-dependent expression of miRNAs in lung tissue from Collaborative Cross founder strains that were sensitized and challenged with house dust mite allergen (Der p 1). We analyzed whole lung RNAs from the eight Collaborative Cross founder strains (n=4/strain, all males) using Affymetrix miRNA 2.0 arrays
Project description:Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual BALB/c mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of CBA/Ca mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with OVA as the control. The microarray analysis was performed in quadruplicate. Twelve dual channel microarray slides were used in the overall design of this experiment.
Project description:Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual BALB/c mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of CBA/Ca mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with OVA as the control. The microarray analysis was performed in quadruplicate. Twelve dual channel microarray slides were used in the overall design of this experiment.
Project description:Intravenous Immunoglobulin (IVIg) is widely used as an immunomodulatory therapy. We have recently demonstrated that IVIg protects against airway hyper-reactivity (AHR) and inflammation in mouse models of allergic airway disease (AAD), associated with induction of Foxp3+ regulatory T cells (Treg). Using DEREG (DEpletion of REGulatory T cell) mice, in which endogenous Treg can be ablated with Diphtheria toxin (DTx) treatment, we demonstrate that IVIg generates a de novo population of induced Treg (iTreg) in the absence of endogenous Treg. IVIg-generated iTreg were sufficient for inhibition of ovalbumin-induced AHR in an antigen-driven murine model of AAD. In the absence of endogenous Treg, IVIg failed to confer protection against AHR and airway inflammation. Adoptive transfer of purified IVIg-generated iTreg prior to antigen challenge effectively prevented airway inflammation and AHR in an antigen-specific manner. The goal of this study was to characterize the gene expression profile of a pure population of IVIg-generated induced Treg (iTreg). Treg were isolated from mice sensitized and challenged with ovalbumin (OVA). Animals were treated with IVIg to generate iTreg with or without DTx endogenous Treg pre-depletion. Human serum albumin (HSA) was used as a control protein treatment. RNA was isolated from 4 biological replicates for each condition. 12 samples in total were hybridized to Affymetrix gene expression microarrays. variable: treatment: OVA-HSA-OVA - DTx: BMR133, BMR134, BMR135, BMR136 variable: treatment: OVA-IVIg-OVA - DTx: BMR137, BMR138, BR139, BMR140 variable: treatment: OVA-IVIg-OVA + DTx: BMR141, BMR142, BMR143, BMR144 repeat: biological replicate: eTreg: BMR133, BMR134, BMR135, BMR136 repeat: biological replicate: e_iTreg: BMR137, BMR138, BR139, BMR140 repeat: biological replicate: IVIg-iTreg: BMR141, BMR142, BMR143, BMR144
Project description:Asthma bronchiale is an inflammatory disease of the respiratory airways and a major factor of increasing health care costs worldwide. The molecular actors leading to asthma are not fully understood and require further investigation. The aim of this study was to monitor the proteome during asthma development from early inflammatory to late fibrotic stages. A time-course-based ovalbumin (OVA) mouse model was applied to establish an asthma phenotype and the lung proteome was analysed at four time points during asthma development (0 weeks = control, 5 weeks, 8 weeks and 12 weeks of OVA treatment).