Gene expression from aged and young dorsal root ganglia after nerve injury
Ontology highlight
ABSTRACT: Sciatic nerve crush was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from dorsal root ganglia 5 days after injury compared to naïve animals. Results show differences in intrinsic growth responses with normal aging. Total RNA taken from L4 and L5 dorsal root ganglia 5 days after injury 2-month and 24-month old animals at either day 0 or day 5 after sciatic nerve crush injury.
Project description:Sciatic nerve crush was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from dorsal root ganglia 5 days after injury compared to naïve animals. Results show differences in intrinsic growth responses with normal aging.
Project description:We generated whole-genome gene expression profiles of dorsal root ganglion (DRG) neurons following nerve damage. DRG neurons extend one peripheral axon into the spinal nerve and one central axon into the dorsal root. The peripheral axon regenerates vigorously, while in contrast the central axon has little regenerative capacity. For this study, two groups of animals were subjected either to sciatic nerve (SN) or dorsal root (DR) crush, and at 12, 24, 72 hours and 7 days after the crush, lumbar DRGs L4, L5 and L6 were dissected and total RNA was extracted.
Project description:We generated whole-genome gene expression profiles of dorsal root ganglion (DRG) neurons following nerve damage. DRG neurons extend one peripheral axon into the spinal nerve and one central axon into the dorsal root. The peripheral axon regenerates vigorously, while in contrast the central axon has little regenerative capacity. For this study, two groups of animals were subjected either to sciatic nerve (SN) or dorsal root (DR) crush, and at 12, 24, 72 hours and 7 days after the crush, lumbar DRGs L4, L5 and L6 were dissected and total RNA was extracted. For each time point after lesion, three biological replicate RNA samples were hybridized together with the common reference sample consisting of labeld RNA pooled from three unlesioned animals.
Project description:Sciatic nerve ligation was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from sciatic nerve 1 and 4 days after injury compared to naïve animals. Results show differences in sciatic nerve responses with normal aging. Total RNA taken from sciatic nerves from 2-month and 24-month old animals at either day 0, 1 and 4 after sciatic nerve crush injury.
Project description:Here we studied the NOX2 dependent redox-proteome in dorsal root ganglia in mice. The overall goal was to assess the degree of NOX2-dependent changes in oxidised proteins following exposure to enriched enviroment and sciatic nerve axotomy in dorsal root ganglia.
Project description:We used microarrays to distinguish the gene expression differences among different time points after injury. We generated L4-6 dorsal root ganglia (DRG) tissues and proximal sciatic nerve (SN) tissues (0.5cm) at 0d, 1d, 4d, 7d and 14d after sciatic nerve resection.
Project description:Axon regeneration in the central nervous system (CNS) requires reactivating injured neurons’ intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater spouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. These screens are presented here. Biological quadruplicate - Mouse tissue - Naïve Dorsal Root Ganglia (DRG) and 5 day post sciatic nerve crush DRG - x9 strains.
Project description:The recent advance in single cell RNAseq technologies has enabled a new approach to investigate satellite glial cells (SGCs). Here we publish a dataset from mice subjected to sciatic nerve injury as well as a dataset from dorsal root ganglia cells after 3 days in culture. We use a meta-analysis approach to compare the injury response with that in other published datasets and conclude that SGCs share a common signature following sciatic nerve crush and sciatic ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state, while others start resembling Schwann cell-like precursors.
Project description:We used microarrays to distinguish the gene expression differences among different time points after injury We generated L4-6 dorsal root ganglia (DRG) tissues (0.5cm) at 0.5h, 3h, 6h and 9h after sciatic nerve resection
Project description:In the mammalian peripheral nervous system, axon regeneration occurs spontaneously after injury. We compared the transcriptome profile of male and female dorsal root ganglia to examine if injury responses after sciatic nerve injury is sex-dependent.