ABSTRACT: RNA-Seq performed on Dicer KO and WT murine mesenchymal stem cells MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression. Examination of mature mRNA expression changes in adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) with and without Dicer (WT: Dicer f/f, KO: Dicer -/-).
Project description:RNA-Seq performed on Dicer KO and WT murine mesenchymal stem cells from total RNA MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression. Total RNA was analyzed from adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) with and without Dicer (WT: Dicer f/f, KO: Dicer -/-), as well as from WT cells transfected with an empty vector or a vector containing Tead4, Sox9 or Pbx3 transcripts.
Project description:We performed ChIP-Seq of H3K27ac in duplicate in both WT and KO mesenchymal stem cells to evaluate global transcriptional changes between the new cells. We identified putative transcription factor binding sites using GEM v1.1 in K27ac data as well as in p MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression. The experiment was designed to mimic the previously captured ChIP-Seq with two replicates in both WT and KO MSCs
Project description:RNA-Seq performed on Dicer KO and WT murine mesenchymal stem cells MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression.
Project description:RNA-Seq performed on Dicer KO and WT murine mesenchymal stem cells from total RNA MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression.
Project description:We performed ChIP-Seq of H3K27ac in duplicate in both WT and KO mesenchymal stem cells to evaluate global transcriptional changes between the new cells. We identified putative transcription factor binding sites using GEM v1.1 in K27ac data as well as in p MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression.
Project description:MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function. mRNAs from adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) with and without Dicer (WT: Dicer f/f, KO: Dicer -/-), were analyzed. WT and KO cells were transfected with a nontargeting control siRNA. KO cells were separately transfected with a synthetic let-7g siRNA duplex, or an siRNA targeting Nr6a1.
Project description:Dicer is an RNase III-family endoribonuclease and haploinsufficient tumor suppressor that is required for the biogenesis of miRNAs, yet in vivo structure-function characterization of its RNase IIIA and IIIB domains have not been reported. In murine Dicer knockout fibroblasts, we expressed human Dicer with point mutations in the RNase III, helicase, and PAZ domains and characterized miRNA expression by Northern blot and massively parallel sequencing of small RNAs. Inactivation of the RNase IIIA or IIIB domain blocked maturation of miRNAs derived from the 3’ or 5’ arms of miRNA precursors, respectively, and resulted in altered miRNA expression profiles. Small RNAs from murine mesenchymal stem cells (MScs) with and without Dicer (WT:Dicer f/f, KO:Dicer -/-, KO transfected with various hsDicer point mutants) were analyzed.
Project description:MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function. Examination of histone modifications in adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) with and without Dicer (WT: Dicer f/f, KO: Dicer -/-).
Project description:MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function. Small RNAs from adult mesenchymal stem cells (immortalized clonal lines of murine MSCs) with and without Dicer (Dicer f/f, Dicer -/-) were analyzed.
Project description:TRBP has two known functions as Dicer co-factor and PKR inhibitor. However, the role of TRBP in miRNA biogenesis is controversial and its regulation of PKR in mitosis remains unexplored. Here, we generate TRBP KO HeLa cells and find that TRBP depletion alters Dicer processing sites of a subset of miRNAs, but does not affect Dicer stability, miRNA abundance, or Argonaute loading. By generating PACT, another Dicer interactor, and TRBP/PACT double-KO cells, we further show that TRBP and PACT do not functionally compensate each other and that only TRBP contributes to Dicer processing. We also report that TRBP is hyperphosphorylated by JNK in M phase when PKR is activated by cellular dsRNAs. Hyperphosphorylation potentiates the inhibitory activity of TRBP on PKR, suppressing PKR in M-G1 transition. By generating the first human TRBP KO, our study clarifies the role of TRBP and unveils negative feedback regulation of PKR through TRBP phosphorylation. small RNAs of wild type, TRBP knockout, PACT knockout and TRBP/PACT double knockout cells were sequenced by Illumina Miseq.