Expression data from human monocyte derived dendritic cells infected with adenovirus expressing HIV-1 Vpr
Ontology highlight
ABSTRACT: HIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune responses. We used the microarray analysis to elucidate the differnetail expression pattern of differnet genes in human dendritic cells infected with HIV-1 Vpr. As result we found that HIV-1 Vpr protein leads to the induction of various interferon stimualted genes (ISGs) in human monocyte derived dendritic cells. Human monocytes-derived dendritic cells (MDDCs) were isolated from peripheral blood mononuclear cells (PBMCs) from two healthy donors and were infected with recombinant adenoviruses either expressing HIV-1 Vpr or ZsGreen1 as a control. At 48 hours post-infection, RNA was isolated and subjected to microarray analysis.
Project description:HIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune respone and cell signaling pathways. We used the microarray analysis to elucidate the differnetail expression pattern of differnet genes in human macrophages infected with HIV-1 Vpr. As result we found that HIV-1 Vpr protein leads to the induction of various interferon stimualted genes (ISGs) and chemokines in human macrophages. Human monocytes-derived macrophages (MDMs) were isolated from peripheral blood mononuclear cells (PBMCs) from two healthy donors and were infected with recombinant adenoviruses either expressing HIV-1 Vpr or ZsGreen1 as a control. At 48 hours post-infection, RNA was isolated and subjected to microarray analysis.
Project description:HIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune responses. We used the microarray analysis to elucidate the differnetail expression pattern of differnet genes in human dendritic cells infected with HIV-1 Vpr. As result we found that HIV-1 Vpr protein leads to the induction of various interferon stimualted genes (ISGs) in human monocyte derived dendritic cells.
Project description:HIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune respone and cell signaling pathways. We used the microarray analysis to elucidate the differnetail expression pattern of differnet genes in human macrophages infected with HIV-1 Vpr. As result we found that HIV-1 Vpr protein leads to the induction of various interferon stimualted genes (ISGs) and chemokines in human macrophages.
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. Human fetal neurons were chosen to examine the impact of HIV-1 Vpr protein on gene expression
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. Using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Vpr) on the expression of miRNAs and mRNAs.
Project description:Dendritic cells (DC) serve a key function in host defense, linking innate detection of microbes to the activation of pathogen-specific adaptive immune responses. Whether there is cell-intrinsic recognition of HIV-1 by host innate pattern-recognition receptors and subsequent coupling to antiviral T cell responses is not yet known. DC are largely resistant to infection with HIV-1, but facilitate infection of co-cultured T-helper cells through a process of trans-enhancement. We show here that, when DC resistance to infection is circumvented, HIV-1 induces DC maturation, an antiviral type I interferon response and activation of T cells. This innate response is dependent on the interaction of newly-synthesized HIV-1 capsid (CA) with cellular cyclophilin A (CypA) and the subsequent activation of the transcription factor IRF3. Because the peptidyl-prolyl isomerase CypA also interacts with CA to promote HIV-1 infectivity, our results suggest that CA conformation has evolved under opposing selective pressures for infectivity versus furtiveness. Thus, a cell intrinsic sensor for HIV-1 exists in DC and mediates an antiviral immune response, but it is not typically engaged due to absence of DC infection. The virulence of HIV-1 may be related to evasion of this response, whose manipulation may be necessary to generate an effective HIV-1 vaccine. We analyzed the gene expression profiles of uninfected human monocyte-derived dendritic cells (MDDCs) and MDDCs infected with an envelope-defective GFP-encoding VSV-G-pseudotyped HIV-1 vector (HIVGFP(G)) and with VSV-G pseudotyped virus-like particles derived from SIVmac to deliver Vpx (SIVVLP(G)), alone or in combination. Cells were infected at day 4 of differentiation and cells were harvested 48 hours later. RNA was extracted with TRIzol. RNA was labeled and hybridized to Human Genome U133A 2.0 arrays arrays following the Affymetrix protocols. Data were analyzed in R and Bioconductor.
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. Human neurons SH-SY5Y were chosen to examine the impact of HIV-1 Vpr protein on gene expression
Project description:Viruses target host proteins for degradation to enhance their replication and transmission, and identifying these targets has provided key insights into the host-pathogen interaction1-3. Here, we use complementary unbiased mass spectrometry-based approaches to dissect the widespread proteomeic remodelling seen in HIV-1 infected T-cells. Remarkably, the HIV accessory protein Vpr is both necessary and sufficient to cause the vast majority of these changes. Protein regulation requires recruitment of the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex, and pulsed-Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC) and immunoprecipitation-mass spectrometry (IP-MS) identified at least 38 cellular proteins directly targeted for degradation by Vpr. Whilst other HIV-1 accessory proteins downregulate a small number of specific host factors, Vpr depletes multiple protein targets, causing systems-level changes to the cellular proteome. A subset of the novel cellular targets identified in this study are depleted by Vpr variants from across HIV-1/SIVcpz and other primate lentiviral lineages, confirming their biological importance in vivo.
Project description:HIV-1 accessory protein, Vpr, is required for efficient HIV-1 infection of macrophages. Here we show that Vpr reprograms macrophage gene expression by altering the activity of master transcriptional regulator, PU.1, which is responsible for regulating the expression of host immune response genes and is necessary for normal hematopoiesis. In HIV-infected primary macrophages, Vpr-dependent changes in PU.1 levels result in suppression of known anti-viral targets of Vpr including IFITM3 and MRC1. Moreover, we find that PU.1 and its co-factor TET2 are co-recruited to DCAF1 by Vpr and targeted for accelerated degradation. Downmodulation of PU.1 is a highly conserved function of Vpr that is maintained across primate lentiviruses including HIV-2 and several SIVs. In contrast, this activity is not shared by the evolutionarily related accessory protein Vpx. Our findings demonstrate how Vpr dramatically enhances HIV spread in macrophages by targeting a myeloid-specific transcription factor needed for expression of multiple viral restriction factors.
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders.