MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and 22q11.2 deletion
Ontology highlight
ABSTRACT: We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ) -associated genetic factor. Several genes in the deleted region have been implicated; one of the more promising candidates is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. miRNA profiling of 7 SZ samples and 9 Control samples derived from iPSCs
Project description:We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ) -associated genetic factor. Several genes in the deleted region have been implicated; one of the more promising candidates is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del.
Project description:We report the application of RNA sequencing to assess the expression dynamics of miRNAs and their isoforms over time upon infection with a panel of six intracellular bacteria (Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis Beijing strain GC1237, Mycobacterium bovis BCG, Salmonella typhimurium strain Keller, Staphloccocus epidermidis and Yersinia pseudotuberculosis) Study of miRNA expression dynamics of monocyte-derived dendritic cells upon bacterial infection using RNA sequencing
Project description:The genetics of messenger RNA expression has been extensively studied in humans and other organisms, but little is known about genetic factors contributing to microRNA (miRNA) expression. We examined natural variation of miRNA expression in adipose tissue in a population of 200 men who have been carefully characterized for metabolic syndrome phenotypes as part of the METSIM study. We genotyped the subjects using high-density SNP microarrays and quantified the mRNA abundance using genome-wide expression arrays and miRNA abundance using next generation sequencing. We reliably quantified 356 miRNA species that were expressed in human adipose tissue, a limited number of which made up most of the expressed miRNAs. We mapped the miRNA abundance as an expression quantitative trait and determined cis regulation of expression for 9 of the miRNAs and of the processing of one miRNA (miR-28). The degree of genetic variation of miRNA expression was substantially less than that of mRNAs. For the majority of the miRNAs, genetic regulation of expression was independent of the host mRNA transcript expression. We also showed that for 108 miRNAs, mapped reads displayed widespread variation from the canonical sequence. We found a total of 24 miRNAs to be significantly associated with metabolic syndrome traits. We suggest a regulatory role for miR-204-5p which was predicted to inhibit ACACB, a key fatty acid oxidation enzyme that has been shown to play a role in regulating body fat and insulin resistance in adipose tissue. miRNA expression profiling of adipose tissue isolated from 200 humans
Project description:In this study we show that global levels of mature miRNAs are unaffected in C. elegans after knockdown of either subunit of CK2 (encoded by kin-3 and kin-10) by RNAi. Small RNAs were quantified from wild-type animals at L4 stage fed either vector (L4440), kin-3, kin-10, or alg-1 RNAi. Mature miRNA counts were quantified by summing the total number of reads mapping to each miRNA and normalized to the total number of mapped reads per sequencing library.
Project description:We profiled and quantitated miRNAs in two skin tumors (Basal cell carcinoma and Merkel cell carcinoma) and identified tumor-specific miRNAs. We used these tumor-specific miRNAs to guide development of miRNA fluorescence in situ hybridization. 2 barcoded sequencing runs, including 40 unique samples (36 used in manuscript). The details of each sample can be found in Supplementary Tables S1 and S2.
Project description:We investigated tumoral miRNA expression of patients with clear-cell renal cell carcinoma treated with VEGFR-TKIs in first line. Sequencing was performed on 109 FFPE resection specimens. The samples were sequenced in 2 major batches (2014 and 2017).
Project description:Genetic male sterility (GMS) in cotton (Gossypium hirsutum) plays an important role in the utilization of hybrid vigor. However, the molecular mechanism of the GMS is still unclear. While numerous studies have demonstrated that microRNAs (miRNA) regulate flower and anther development, whether different small RNA regulations exist in GMS and its wild type is unclear. To investigate the global expression and complexity of small RNAs during cotton anther development, three small RNA libraries were constructed from the anthers of three development stages each from fertile wild type (WT) and its GMS mutant cotton. Examination of different miRNA profiles in 2 lines.
Project description:We aimed to assess differences in miRNA expression profiles in transcriptomic molecular subtypes of ccRCC (Beuselinck et al, Clinical Cancer Research 2015) and to correlate miRNAs with overal survival since diagnosis of ccRCC. Sequencing was done for 129 primary ccRCC (formalin-fixed paraffin-embedded surgical resection specimens, previously untreated) and 16 normal kidney specimens. Normal kidney was obtained from the nephrectomy specimens at time of ccRCC removal, in tissue blocks containing only normal kidney (so nót the normal kidney immediately adjacent to ccRCC). The samples were sequenced in 2 major batches (2014 and 2017).
Project description:The role of microRNAs in gene regulation has been well established. The extent of miRNA regulation also increases with increasing genome complexity. Though the number of genes appear to be equal between human and zebrafish, substantially less microRNAs have been discovered in zebrafish compared to human (Release 19). It appears that most of the miRNAs in zebrafish are yet to be discovered. We sequenced small RNAs from brain, gut, liver, ovary, testis, eye, heart and embryo of zebrafish. In brain, gut and liver sequencing was done in male and female separately. Majority of the sequenced reads (16-62%) mapped to known miRNAs, with the exception of ovary (5.7%) and testis (7.8%). Using the miRNA discovery tool (miRDeep2), we discovered novel miRNAs from the un-annotated reads that ranged from 7.6 to 23.0%, with exceptions of ovary (51.4%) and testis (55.2%). The prediction tool identified a total of 459 novel pre-miRNAs. We compared expression of miRNAs between different tissues and between males and females to identify tissue associated and sex associated miRNAs respectively. These miRNAs could serve as putative biomarkers for these tissues. The brain and liver had highest number of tissue associated (22) and sex associated (34) miRNAs, respectively. This study comprehensively identifies tissue and sex associated miRNAs in zebrafish. Further, we have discovered 459 novel pre-miRNAs (~30% seed homology to human miRNA) as a genomic resource which can facilitate further investigations to understand miRNA-mRNA gene regulatory networks in zebrafish which will have implications in understanding the function of human homologs. Known miRNA profiling, novel miRNA discovery and identification of tissue associated and sex associated miRNAs from sRNA deep sequencing data of different tissues and embryo of zebrafish (in triplicate) was carried out using the Illumina HiSeq 2000 platform.
Project description:MicroRNAs (miRNAs) regulate many genes critical for tumorigenesis. We profiled miRNAs from 11 normal breast tissues, 17 non-invasive, 151 invasive breast carcinomas, and 6 cell lines by in-house-developed barcoded Solexa sequencing. miRNAs were organized in genomic clusters representing promoter-controlled miRNA expression and sequence families representing seed-sequence-dependent miRNA-target regulation. Unsupervised clustering of samples by miRNA sequence families best reflected the clustering based on mRNA expression available for this sample set. Clustering and comparative analysis of miRNA read frequencies showed that normal breast samples were separated from most non-invasive ductal carcinoma in situ and invasive carcinomas by increased miR-21 (the most abundant miRNA in carcinomas) and multiple decreased miRNA families (including mir-98/let-7), with most miRNA changes apparent already in the non-invasive carcinomas. In addition, patients that went on to develop metastasis demonstrated increased expression of mir-423, and triple negative breast carcinomas were most distinct from other tumor subtypes due to up-regulation of the mir-17~92 cluster. However, absolute miRNA levels between normal breast and carcinomas did not reveal any significant differences. We also discovered two polymorphic nucleotide variations among the more abundant miRNAs miR-181a (T19G) and miR-185 (T16G), but we did not identify nucleotide variations expected for classical tumor suppressor function associated with miRNAs. The differentiation of tumor subtypes and prediction of metastasis based on miRNA levels is statistically possible, but is not driven by deregulation of abundant miRNAs, implicating far fewer miRNAs in tumorigenic processes than previously suggested. 21 barcoded sequencing runs, including 185 unique samples and 54 samples in replicate (6 in triplicate and the remaining in duplicate). The details of each sample can be found in Supplementary Tables S1 and S2.