Project description:Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyzed the genomes of ten patients with congenital disease that were preselected to carry complex chromosomal rearrangements (CCRs) with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint-junctions indicates that break-repair involves non-homologous or microhomology mediated end-joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred bp and several Mb. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template-switching. Our work provides detailed insight in the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. We analyzed five patient-parent trios with Illumina BeadChip arrays to test for (de novo) copy number variants and to analyze the parental origin of the complex rearrangements in these patients.
Project description:Chromothripsis represents an extreme class of complex chromosome rearrangements (CCRs) with major effects on chromosomal architecture. Although recent studies have associated chromothripsis with congenital abnormalities, the incidence and pathogenic effects of this phenomenon require further investigation. Here, we analyzed the genomes of three families in which chromothripsis rearrangements were transmitted from a female carrier to her child. The chromothripsis in the carriers resulted in completely balanced rearrangements involving 8-23 breakpoint junctions across 3-5 chromosomes. Two carriers did not show any phenotypic malformations, although 3-13 protein coding genes were affected by breakpoints. Unbalanced but stable transmission of a subset of the derivative chromosomes caused apparently de novo complex copy number changes in two children. This resulted in gene dosage changes, which are likely responsible for their severe congenital phenotypes. In contrast, one patient with severe congenital disease, carried all three chromothripsis chromosomes from his healthy mother, but one of the chromosomes acquired de novo rearrangements leading to copy number changes. These results show that the human genome can tolerate extreme reshuffling of chromosomal architecture, including breakage of multiple protein coding genes, without noticeable phenotypic effects. The presence of chromothripsis in healthy carriers strongly affects reproduction and is expected to substantially increase the risk of spontaneous abortions and severe congenital disease. We analyzed one patient-parent-mother's parents quintet (case 1) and a patient-siblings-parent quintet (case 2) with Illumina beadchip arrays and one patient-parent trio (case 3) to test for (de novo) copy number variants and to analyze the parental origin of the complex rearrangements in these patients. For case 2, the mother and patient's SNP array data was previously submitted [GSE37906]. aCGH data for case 3 is submitted seperately.
Project description:Chromothripsis represents an extreme class of complex chromosome rearrangements (CCRs) with major effects on chromosomal architecture. Although recent studies have associated chromothripsis with congenital abnormalities, the incidence and pathogenic effects of this phenomenon require further investigation. Here, we analyzed the genomes of three families in which chromothripsis rearrangements were transmitted from a mother to her child. The chromothripsis in the mothers resulted in completely balanced rearrangements involving 8-23 breakpoint junctions across 3-5 chromosomes. Two mothers did not show any phenotypic malformations, although 3-13 protein coding genes were affected by breakpoints. Unbalanced but stable transmission of a subset of the derivative chromosomes caused apparently de novo complex copy number changes in two children. This resulted in gene dosage changes, which are likely responsible for their severe congenital phenotypes. In contrast, one child with severe congenital disease, carried all three chromothripsis chromosomes from his healthy mother, but one of the chromosomes acquired de novo rearrangements leading to copy number changes. These results show that the human genome can tolerate extreme reshuffling of chromosomal architecture, including breakage of multiple protein coding genes, without noticeable phenotypic effects. The presence of chromothripsis in healthy individuals strongly affects reproduction and is expected to substantially increase the risk of spontaneous abortions and severe congenital disease. We analyzed one patient-parent-mother's parents quintet (case 1) and a patient-siblings-parent quintet (case 2) with Illumina beadchip arrays and one patient-parent trio (case 3) to test for (de novo) copy number variants and to analyze the parental origin of the complex rearrangements in these patients. Here, we analyzed one patient-parent-mother's parents quintet to test for (de novo) copy number variants and to analyze the parental origin of the complex rearrangements in these patients.
Project description:Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear. We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that in many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner. We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis. We analyzed 16 tissue samples from four patients. For each patient we analyzed the DNA of a primary colon tumor sample, a normal colon tissue sample, a metastatic liver tumor sample and a normal liver tissue sample. The normal colon and normal liver samples serve as a control for the primary and metastatic tumor samples.
Project description:The International Stem Cell Initiative analyzed 127 human embryonic stem cell lines and 11 induced pluripotent cell lines, from 39 laboratories worldwide for genetic changes occurring during culture. Most cell lines were analyzed at an early and late passage. Population structure analysis from SNP detection revealed that the cell lines included representatives of all major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed but haphazardly with no link to time in culture. Structural variants (SVs), below the level of standard chromosome banding, determined from the SNP arrays, also appeared sporadically but no common variants related to culture were observed on chromosomes 1, 12 and 17. However, overlapping SV gains acquired in the chromosome 20q11.21 region during extended culture were identified in over 20% of the cell lines. Three genes within the minimal shared region, ID1, BCL2L1, and HM13, are expressed in human ES cells, with BCL2L1 a strong candidate for driving this culture adaptation of ES cells. In order to provide better insight into the frequency and types of genetic changes affecting human ES cells on prolonged passage, the ISCI has undertaken a survey by karyology and high resolution SNP array of one hundred twenty seven independent human ES cell lines, provided by thirty nine laboratories in twenty countries around the world, particularly to identify the common genetic changes that occur during prolonged culture. Here we append data from the SNP genotyping of the genomic DNA samples extracted from the human embryonic stem cells. A group of eleven human iPS cells from three laboratories was also included to provide a pilot comparison of these pluripotent cells derived by reprogramming.
Project description:We reveal three-dimensional patterns of tumour growth by exploiting the unique metastasizing patterns of treatment naïve stage IIIC/IV epithelial ovarian cancer. We performed topographic mapping of structural genomic rearrangements, coding mutations, copy number changes and RNA expression in biopsies derived from 27 primary and metastatic sites across three patients. Based on somatic genomic changes, we performed sample clustering and obtained unique insight in natural tumour growth and spread. Based on extensive multi-level profiling, our data highlight the diverse modes of epithelial ovarian cancer development before applying selective pressure from therapy. We performed SNP array analysis on tumor biopsies from 3 patients (P1, P2, P3) with advanced stage ovarian cancer. This submission includes SNP data for 26 tumor biopsies and 5 normal tissue samples.
Project description:Chromosome segregation errors have been linked to DNA damage and genomic rearrangements. Accumulating evidence has shown that catastrophic genomic rearrangements, like chromothripsis, can result from lagging chromosomes undergoing aberrant DNA replication and DNA damage in micronuclei. Detailed characterization of genomic rearrangements resulting from DNA damage in micronuclei has been hampered because of difficulties in culturing daughter cells with DNA damage. Here, we employ a method by which a specific single chromosome is trapped in a micronucleus, followed by transfer to an acceptor cell. Next, stably propagating clonal cell lines with an extra chromosome were established and analyzed by copy number profiling and whole genome sequencing. While non-transformed, p53 proficient and telomerase-immortalized RPE1 cells showed a stable genome following addition of the transferred chromosome, we observed frequent de novo genomic rearrangements in cells derived from the HCT116 colorectal cancer cell line after chromosome transfer. The de novo rearrangements varied from simple deletions and duplications to complex rearrangements. Phase-informative SNPs revealed that the rearrangements specifically occurred on the transferred chromosome. We found that the complex rearrangements recapitulated all features of chromothripsis, including massive oscillation between two copy number states, localization to a single chromosome, random joining of chromosome fragments and non-homologous or micro-homologous repair. We describe an approach that enables the isolation of clonal cell lines with genomic rearrangements and chromothripsis on a specific chromosome in p53 proficient cells. The procedure enables further investigation of the exact mechanism leading to chromothripsis and the analysis of its consequences for cell survival (viability) and cancer development. We analyzed 38 cell clones, originating from HCT116 or RPE1 cells respectively, with Illumina beadchip arrays to test for unique de novo copy number variants and to determine the chromosome affacted by the CNAs.
Project description:Chromosome segregation errors have been linked to DNA damage and genomic rearrangements. Accumulating evidence has shown that catastrophic genomic rearrangements, like chromothripsis, can result from lagging chromosomes undergoing aberrant DNA replication and DNA damage in micronuclei. Detailed characterization of genomic rearrangements resulting from DNA damage in micronuclei has been hampered because of difficulties in culturing daughter cells with DNA damage. Here, we employ a method by which a specific single chromosome is trapped in a micronucleus, followed by transfer to an acceptor cell. Next, stably propagating clonal cell lines with an extra chromosome were established and analyzed by copy number profiling and whole genome sequencing. While non-transformed, p53 proficient and telomerase-immortalized RPE1 cells showed a stable genome following addition of the transferred chromosome, we observed frequent de novo genomic rearrangements in cells derived from the HCT116 colorectal cancer cell line after chromosome transfer. The de novo rearrangements varied from simple deletions and duplications to complex rearrangements. Phase-informative SNPs revealed that the rearrangements specifically occurred on the transferred chromosome. We found that the complex rearrangements recapitulated all features of chromothripsis, including massive oscillation between two copy number states, localization to a single chromosome, random joining of chromosome fragments and non-homologous or micro-homologous repair. We describe an approach that enables the isolation of clonal cell lines with genomic rearrangements and chromothripsis on a specific chromosome in p53 proficient cells. The procedure enables further investigation of the exact mechanism leading to chromothripsis and the analysis of its consequences for cell survival (viability) and cancer development. We analyzed 38 cell clones, originating from HCT116 or RPE1 cells respectively, with Illumina beadchip arrays to test for unique de novo copy number variants and to determine the chromosome affacted by the CNAs.
Project description:The goal of the present study was to identify genetic variants that are associated with drug response of OCD patients. We performed a genome-wide association study of 96 OCD patients to examine genetic variants contributing to the drug response of OCD patients.