Genomewide measurements of neural-specific mRNA decay in Drosophila embryos
Ontology highlight
ABSTRACT: Neural-specific mRNA decay measurements by TU-Decay technique in control and Pumilio knockdown embryos These TU-Decay microarrays analyze mRNA levels at three timepoints: a one hour pulse, one hour chase, and three hour chase. Neural-specific RNA purification was achieved using prospero-GAL4 driving UAS-T.g.UPRT. Pumilio knockdown in the nervous system was acheived using UAS-Pum(RNAi) driven by prospero-Gal4.
Project description:whole embryo (all tissues) measurement of mRNA decay by 4-thiouridine pulse-chase These TU-Decay microarrays analyze mRNA levels at three timepoints: a one hour pulse, one hour chase, and three hour chase. Measurements with or without transcription inhibition by actinomycin D (ActD) were compared.
Project description:We show that the combination of spatially restricted uracil phosphoribosyltransferase (UPRT) expression with 4-thiouracil (4TU) delivery can be used to label and purify cell type specific RNA from intact complex tissues. This method is useful for isolating RNA from cell types that are difficult to isolate by dissection or dissociation methods and should work in any organism where UPRT can be spatially expressed, including mammals and other vertebrates. To confirm that thio-labeled RNA was from UPRT-expressing cells and demonstrate the utility of TU-tagging for cell type-specific RNA isolation, we purified TU-tagged and untagged RNA and compared them using microarrays. We chose to isolate RNA from larval glia, which are present in low number, are highly dispersed, and have a complex cell morphology, making them one of the most difficult cell types to isolate by dissection or dissociation methods. We used reversed polarity (repo)-GAL4 to drive expression of UAS-UPRT specifically in glial cells of the larval brain. We purified TU-tagged and untagged RNA from 72-96h larval brains, and hybridized them to custom Agilent microarrays. We performed two biological replicate experiments.
Project description:Pulse chase measurements using thiouracil (DTU) labeling via UPRT and chasing with uracil Data from tachyzoites is labeled "DTU Pulse Chase". Two independent pulse chase experiments were performed in tachyzoites, pulse chase 1 and 2. Duplicate arrays at each timepoint were performed for pulse chase 2 (2 a and b). Data from bradyzoites are labeled "DTU Bradyzoite Pulse Chase". Two independent pulse chase experiments were performed in bradyzoites and a single set of arrays were performed for each experiment. Just one chase timepoint was used in the bradyzoite experiments, the 2 hour chase. An RNA stablity experiment design type examines stability and/or decay of RNA transcripts. Keywords: RNA_stability_design
Project description:Pulse chase measurements using thiouracil (DTU) labeling via UPRT and chasing with uracil Data from tachyzoites is labeled "DTU Pulse Chase". Two independent pulse chase experiments were performed in tachyzoites, pulse chase 1 and 2. Duplicate arrays at each timepoint were performed for pulse chase 2 (2 a and b). Data from bradyzoites are labeled "DTU Bradyzoite Pulse Chase". Two independent pulse chase experiments were performed in bradyzoites and a single set of arrays were performed for each experiment. Just one chase timepoint was used in the bradyzoite experiments, the 2 hour chase. An RNA stablity experiment design type examines stability and/or decay of RNA transcripts. User Defined
Project description:Human articular chondrocytes were isolated from normal or osteoarthritic tissue. RNA decay was measured across the transcriptome in these cells by microarray analysis following an actinomycin D chase for 0, 1, 3 and 5 hours. Normalisation was conducted by quantile normalising each set of four decay curve points (i.e. 0, 1, 3 and 5 hour samples for a given donor's cells) independently of the other data. This meant that each decay curve is normalised independently of the others.
Project description:Paper abstract: Stem cells have the remarkable ability to give rise to both self-renewing and differentiating daughter cells. Drosophila neural stem cells segregate cell-fate determinants from the self-renewing cell to the differentiating daughter at each division. Here, we show that one such determinant, the homeodomain transcription factor Prospero, regulates the choice between stem cell self-renewal and differentiation. We have identified the in vivo targets of Prospero throughout the entire genome. We show that Prospero represses genes required for self-renewal, such as stem cell fate genes and cell-cycle genes. Surprisingly, Prospero is also required to activate genes for terminal differentiation. We further show that in the absence of Prospero, differentiating daughters revert to a stem cell-like fate: they express markers of self-renewal, exhibit increased proliferation, and fail to differentiate. These results define a blueprint for the transition from stem cell self-renewal to terminal differentiation. 6 wildtype samples and 6 prospero mutant samples were hybridised to arrays against a commom reference sample (generated from whole embryo cDNA). The prospero samples were indirectly compared to the wildtype samples via the common reference. Half the wildtype and half of the prospero arrays were dye-swapped.
Project description:Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Methods: Male ZDF rats at six week of age were randomly divided into two groups and administered testosterone undecanoate(TU) or vehicle alone every three days for three weeks. After three weeks, overnight fasted blood glucose and insulin concentrations were significantly higher and glucose tolerance and insulin sensitivity were impaired in TU treated ZDF rats compared to vehicle controls. Moreover, increased serum triglycerides and VLDL were observed in TU treated rats. To further explore the observed metabolic changes in TU treated ZDF rats, whole-genome microarray analysis were performed on isolated liver mRNA. Results: Array analysis revealed that many hepatic lipogenic genes were increased in male ZDF rat livers treated with TU. Interestingly, SREBP-1c, a key transcriptional activator of lipogenic genes and PGC-1 , an activator of SREBP-1c were induced while small heterodimer partner, a transcriptional inhibitor of lipogenic genes was suppressed by TU treatment. Exploring signaling pathways for these effects, we observed that the hepatic activated forms of STAT3 and AMPK, two known inhibitors of hepatic lipogenesis, were decreased in TU treated rat. Moreover, we observed that DHT could block the induction of STAT3 and AMPK phosphorylation in treated primary human hepatocytes. Preliminarily, in the leptin receptor positive zucker diabetic lean male rats, we observed that TU treatment has an oppose effect on the hepatic lipogenic genes, suggesting that hepatic leptin signaling may influence androgen signaling. Further insight into the relationship between androgen deficiency and the leptin system may help improve treatment of the metabolic syndrome. Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Two-condition experiment. (1) lean ZDF rats (control) vs. lean ZDF rats (testosterone treated). (2) obese ZDF rats (control) vs. obese ZDF rats (testosterone treated). Biological replicates: 4 control replicates, 4 treated replicates.
Project description:Pulse chase measurements using thiouracil (DTU) labeling via UPRT and chasing with uracil Data from tachyzoites is labeled "DTU Pulse Chase". Two independent pulse chase experiments were performed in tachyzoites, pulse chase 1 and 2. Duplicate arrays at each timepoint were performed for pulse chase 2 (2 a and b). Data from bradyzoites are labeled "DTU Bradyzoite Pulse Chase". Two independent pulse chase experiments were performed in bradyzoites and a single set of arrays were performed for each experiment. Just one chase timepoint was used in the bradyzoite experiments, the 2 hour chase.