Bisulfite Sequencing for Studying 5mC DNA Methylation Distribution in Vibrio Cholerae
Ontology highlight
ABSTRACT: DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential ÏE cell envelope stress pathway is dispensable in ÎvchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes. Duplicates samples were analyzed for wildtype cells grown under 3 conditions: exponential phase, stationary phase and rabbit intestinal infection
Project description:DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential ÏE cell envelope stress pathway is dispensable in ÎvchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes. Duplicates were used for all samples. For each strain background (C6706 and O395), there were control (Wildtype) samples and experimental samples (VchM knockout)
Project description:DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential σE cell envelope stress pathway is dispensable in ΔvchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes.
Project description:DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential σE cell envelope stress pathway is dispensable in ΔvchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes.
Project description:Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection.
Project description:The microbial cell surface is a critical site of microbe-host interactions that often control infection outcomes. Defining the set of host proteins present at this interface has been challenging. Here, we used a surface biotinylation approach coupled to quantitative mass spectrometry to identify and quantify both bacterial and host proteins present on the surface of diarrheal fluid-derived V. cholerae in an infant rabbit model of cholera. Our data showed that V. cholerae surfaces were coated with numerous host proteins, whose abundance were driven by the presence of cholera toxin, including the C type lectin SP-D. Mice lacking SP-D had enhanced V. cholerae intestinal colonization. Additional host proteins (AnxA1, LPO and ZAG) capable of binding V. cholerae were also found to recognize distinct taxa of the murine intestinal microbiota, suggesting that these host factors may play roles in intestinal homeostasis in addition to host defense. Proteomic analysis of microbial surfaces is valuable for identifying host interactions that regulate infection and homeostasis with both pathogens and endogenous microbiota alike.
Project description:The relationship between epigenetic marks on chromatin and the regulation of DNA replication is poorly understood. Mutation of the H3K27 methyltransferase genes, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, result in re-replication (repeated origin firing within the same cell cycle). Here we show that mutations that reduce DNA methylation act to suppress the re-replication phenotype of atxr5 atxr6 mutants. This suggests that DNA methylation, a mark enriched at the same heterochromatic regions that re-replicate in atxr5/6 mutants, is required for aberrant re-replication. In contrast, RNA sequencing analyses suggest that ATXR5/6 and DNA methylation cooperatively transcriptionally silence transposable elements (TEs). Hence our results suggest a complex relationship between ATXR5/6 and DNA methylation in the regulation of DNA replication and transcription of TEs. DNA-seq: One gram of mature rosette leaves were collected from 3-4-week-old plants, chopped in 0.5 ml of filtered Galbraith buffer, and stained with propidium iodide. A BD FACS Aria II in the UCLA Jonsson Comprehensive Cancer Center (JCCC) Flow Cytometry Core Facility was used to sort the nuclei. For sequencing, 7,000-9,000 8C nuclei of each sample were collected, and purified DNA with Picopure purification kit (Arcturus) following manufacturer instructions. RNA-seq: RNA-seq experiments were performed in two biological replicates for each genotype. 0.1g of tissue was ground in Trizol. Total RNA were treated with DNaseI (Roche), and cleaned up with phenol-chlorophorm and precipitated with ethanol. Libraries were generated and sequenced following manufacturer instructions (Illumina). BS-seq: 0.5-1g of mature rosette leaves were collected, and genomic DNA was extracted using Plant DNeasey mini purification kit (Qiagen). Libraries were generated as previously described (Feng et al., Methods Mol Biol. 2011;733:223-38.).
Project description:In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the epsilon-ammonium of K9 positioned adjacent to bound SAH. These structural insights complemented by in vivo functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. Plants homozygous for null mutations in the KRYPTONITE H3K9 methyltransferase were stably transformed with transgenes encoding the wildtype KYP protein or transgenes carrying induced point mutations in the KYP active site. The resulting lines were assayed for DNA methylation by whole-genome bisulfite sequencing to learn the efficiency with which wildtype and mutant versions of the KYP protein could restore DNA methylation lost in a kyp mutant. Samples 7 and 8 were run as single Illumina lanes and as such were compared to a previous Col sample (GSM881756), this Col sample was realigned to the TAIR10 genome for this study and as such updated processed files are available with this submission. These samples were used to define kyp mutant CHG context DMRs that were complemented upon introduction of the wildtype KYP protein. Samples 1-6 were run as multiplexed samples and were used to assay the degree of complementation for various point mutants. All plants are in the Col ecotype background.
Project description:DNA methylation is a conserved epigenetic gene regulation mechanism. DOMAINS REARRANGED METHYLTRANSFERASE (DRM) is a key de novo methyltransferase in plants, but how DRM acts mechanistically is poorly understood. Here, we report the crystal structure of the methyltransferase domain of tobacco DRM (NtDRM) and reveal a molecular basis for its rearranged structure. NtDRM forms a functional homo-dimer critical for catalytic activity. We also show that Arabidopsis DRM2 exists in complex with the siRNA effector ARGONAUTE4 (AGO4) and preferentially methylates one DNA strand, likely the strand acting as the template for non-coding Pol V RNA transcripts. This strand-biased DNA methylation is also positively correlated with strand-biased siRNA accumulation. These data suggest a model in which DRM2 is guided to target loci by AGO4-siRNA and involves base-pairing of associated siRNAs with nascent RNA transcripts. Whole-genome bisulfite sequencing was done for a wildtype line (ecotype Col) as well as various transgenic lines in a drm2 mutant background (ecotype Col). Each transgenic line expressed a version of the DRM2 protein that was either wildtype or carried induced mutations in order to test the function of various domains in the DRM2 protein. Two sets of whole-genome bisulfite were performed (130615 or 131216) and comparisons were mainly done within sets although comparisons can also be done between sets. The drm2 mutant methylome was also analyzed in this study using a previously published whole-genome bisulfite library (GSE39901).
Project description:Bisulfite padlock probe technique was used to examine DNA modifications at the lactase gene region for human and mouse tissues DNA modifications were investigated in human sperm, blood, jejunal enterocytes and jejunum lacking enterocytes, as well as mouse jejunal enterocytes and jejunum lacking enterocytes. For WGA samples, a genome devoid of DNA modifications was used to verify the efficiency of the bisulfite conversion reactions (the tissue sources were human or mouse intestine).
Project description:We use NGS to assess the ability of TALE-guided DNA methyltranferases to make targeted changes to DNA methylation Targeted bisulfite sequencing of cells infected with wild-type or mutant TALE-DNMT constructs directed to the CDKN2A (p16) locus