ABSTRACT: Standardized skin wounds were established surgically on mice and allowed to heal during a 15-day period. Expression of genes related to heparan sulfate biosynthesis was studied in wound bed and edges during the healing process. Total RNA was isolated from wound edge (regenerating skin) and wound bed at 2, 6 and 15 days post wounding, as well as from intact control skin. Three animals were used for each time point.
Project description:Standardized skin wounds were established surgically on mice and allowed to heal during a 15-day period. Expression of genes related to heparan sulfate biosynthesis was studied in wound bed and edges during the healing process. Keywords: Time course
Project description:Negative-pressure wound therapy (NPWT) is widely used to improve skin wound healing and to accelerate wound bed preparation. Although NPWT has been extensively studied as a treatment for deep wounds, its effect on epithelialization of superficial dermal wounds remains unclear. To clarify the effect of NPWT on reepithelialization, we applied NPWT on split- thickness skin graft donor sites from the first postoperative day (POD) to the seventh POD. Six patients took part in the study and two samples were obtained from each. The first biopsy sample was taken at elective surgery before split-thickness skin grafting and the second one during reepithelialization on the seventh POD. In all 12 samples (eight from four NPWT patients, and four from two control patients) were collected for this study. From each sample, we carried out a comprehensive genome-wide microarray analysis. Data from patients receiving NPWT were compared groupwise with data from those not receiving NPWT. Overall 12 samples were analyzed
Project description:Human in vivo skin wound: Non-wounded skin was obtained by taking punch biopsies from three healthy donors (donor 1,2 and 3). The samples were termed 'skin day 0 in vivo wound'. Skin wound samples were retrieved by making new punch biopsies from the edge of the original biopsies after four days. These samples were termed 'skin day 4 in vivo wound'. As much dermal tissue as possible was removed by dissection to make sure mainly epidermis was present in the samples. The samples were washed in NaCl to possible remove infiltrating inflammatory cells before RNA isolation. Ex vivo skin wounds: Skin was obtained from three healthy donors following reduction surgery (donor 1, 2, and 3). As much dermal tissue as possible was removed dissection. These samples were termed 'skin day 0 ex vivo wound'. Skin was sliced into 1x10 mm slices and incubated in keratinocyte medium for four days with either 1:1000 fold dilution of DMSO or 10 micromolar AG-1478 (dissolved in DMSO). Again as much dermal tissue was removed by dissection as possible before RNA was isolated. These samples were termed 'skin day 4 ex vivo wound' and 'skin day 4 AG-1478 ex vivo wound'. By comparing the gene expression day 4 in ex vivo wound with in vivo wounds it was possible to see which part of the gene expression in wounded skin that was due to the epidermal reaction to injury and how much was due to stimuli from infiltrating inflammatory cells absent in the ex vivo skin wounds. By comparing the data from ex vivo skin wounds day 4 with and without the EGFR-inhibitor AG-1478, it was possible to look at the importance of the EGF-receptor of EGFR for the gene expression in ex vivo wounded skin.
Project description:Lineage negative (CD45- & CD31-) cells were isolated from uninjured skin and day 5 dorsal skin wound beds of 7-week-old AdipoqCre; mT/mG mice using FACS. This experiment describes multiple subsets of wound bed myofibroblasts and identifies that Adipoq-traced cells contribute to the myofibroblast pool in wound beds.
Project description:Mesenchymal cells were isolated from day 5 dorsal skin wound beds of 7-weeks old and >24-months old using FACS. This experiment describes multiple unique subsets of wound bed myofibrolbasts capable of contributing to tissue repair.
Project description:To study early-onset gene expression changes in cutaneous wound healing, 3 mm wounds were induced into the back skin of female wildtype C57BL/6 mice using a biopsy punch. Mice were sacrificed 2h, 6h or 24h post wound induction (PWI) and 1 - 1.5 mm of skin lining the wound edge was isolated and sequenced. The skin from the initial punch biopsy (0h PWI) was preserved and taken as a control sample to identify differentially expressed genes.
Project description:The present study aimed to delineate the central mechanisms by which androgens delay wound repair. Blocking the conversion of testosterone to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase limits its ability to impair skin wound healing, suggesting that DHT is a more potent inhibitor of repair than is testosterone. This study aims to identify, through transcription profiling, potential mechanisms by which the 5alpha-reductase inhibitor MK-434 modulates repair. Microarray analysis of wound RNA samples from rats in which the transformation of testosterone to DHT is prevented has identified biological processes and key individual genes through which DHT may contribute to the altered healing profile in such animals. These include genes with putative roles in wound contraction and re-epithelialization.
Project description:We profiled the expression of circulating microRNAs (miRNAs) in mice exposed to gram-positive and gram-negative bacteria using Illumina small RNA deep sequencing. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14+Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection. Male C57BL/6 mice (age, 10–12 weeks; weight, 30–35 g) were purchased from BioLasco (Yi-Lan, Taiwan). The mice were anesthetized by intraperitoneal injection of an anesthetic cocktail consisting of 0.1 mg/g ketamine and 0.01 mg/g xylazine. The anesthetized mice were restrained in a supine position on a heated pad to maintain body temperature at 37°C. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) purchased from Caliper (Caliper, USA) were used to induce bacterial infection in the mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). To create mixed gram-negative and gram-positive bacterial infection, 1 × 108 Xen14 bacteria and 1 × 108 Xen29 bacteria/100 μL of PBS were used for wound contamination. Three animal models were used to create bacterial infection routes: subcutaneous injection (hereafter referred to as (I)), cut wound (hereafter referred to as (C)), and skin grafting (hereafter referred to as (S)). In the (I) model, E. coli and/or S. aureus suspensions were injected subcutaneously into the backs of the mice using an Fr. 25 needle. In the (C) model, a 1 cm incision wound was created in the midline of the back, smeared with E. coli and/or S. aureus suspension, and the wound was closed directly with a 4-0 nylon suture. In the (S) model, a 1×1 cm rectangular full- thickness skin graft was lifted from the backs of the mice, E. coli and/or S. aureus suspensions were spread over the wound bed, and the skin graft was reattached and closed with a 4-0 nylon suture. An additional group of animals in each of these three models was inoculated with PBS to serve as a negative control. Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14+Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer.
Project description:Global alterations of the early wound healing program by transcriptomics at a skin-wide level by deletion of HIF-1α in wound-infiltrating NK cells.