Near-whole-genome transcriptome analysis of gene expression in human skeletal muscle tissue at baseline in obese individuals with Type 2 Diabetes
Ontology highlight
ABSTRACT: Analysis of gene expression associated with exercise response. The hypothesis tested was that individuals with Type 2 Diabetes that failed to demonstrate exercise-induced metabolic improvements would also reflect this lack of response in their skeletal muscle transcriptional profile at baseline. Of 186 genes identified by microarray analysis, 70% were upregulated in Responders and downregulated in Non-responders. Several genes involved in substrate metabolism and mitochondrial biogenesis differed significantly between the groups at baseline. This differential baseline gene expression indicated that Non-responders had blunted oxidative capacity. Total RNA extracted from baseline samples of skeletal muscle of obese individuals with Type 2 Diabetes who were characterized as either Responders or Non-responders was examined for differential expression of exercise response-assocated genes.
Project description:Analysis of gene expression associated with exercise response. The hypothesis tested was that individuals with Type 2 Diabetes that failed to demonstrate exercise-induced metabolic improvements would also reflect this lack of response in their skeletal muscle transcriptional profile at baseline. Of 186 genes identified by microarray analysis, 70% were upregulated in Responders and downregulated in Non-responders. Several genes involved in substrate metabolism and mitochondrial biogenesis differed significantly between the groups at baseline. This differential baseline gene expression indicated that Non-responders had blunted oxidative capacity.
Project description:This SuperSeries is composed of the following subset Series: GSE18583: Baseline skeletal muscle gene expression GSE35659: A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype (resting muscle after endurance training) Refer to individual Series
Project description:The molecular pathways which are activated and contribute to physiological remodeling of skeletal muscle in response to endurance exercise have not been fully characterized. We previously reported that ~800 gene transcripts are regulated following 6 weeks of supervised endurance training in young sedentary males, referred to as the training responsive transcriptome (TRT). Here we utilized this database together with data on biological variation in muscle adaptation to aerobic endurance training in both humans and a novel out-bred rodent model to study the potential regulatory molecules that coordinate this complex network of genes. We identified three DNA sequences representing RUNX1, SOX9, and PAX3 transcription factor binding sites as over-represented in the TRT. In turn, miRNA profiling indicated that several miRNAs targeting RUNX1, SOX9 and PAX3 were down-regulated by endurance training. The TRT was then examined by contrasting subjects who demonstrated the least vs. the greatest improvement in aerobic capacity (low vs. high responders), and at least 100 of the 800 TRT genes were differentially regulated, thus suggesting regulation of these genes may be important for improving aerobic capacity. In high responders, pro-angiogenic and tissue developmental networks emerged as key candidates for coordinating tissue aerobic adaptation. Beyond RNA level validation there were several DNA variants that associated with VO(2)max trainability in the HERITAGE Family Study but these did not pass conservative Bonferroni adjustment. In addition, in a rat model selected across 10 generations for high aerobic training responsiveness, we found that both the TRT and a homologous subset of the human high responder genes were regulated to a greater degree in high responder rodent skeletal muscle. This analysis provides a comprehensive map of the transcriptomic features important for aerobic exercise-induced improvements in maximal oxygen consumption. This data is from skeletal muscle post 6 weeks of endurance exercise training.
Project description:Skeletal muscle unloading due to joint immobilization induces skeletal muscle atrophy. However, the skeletal muscle proteome response to limb immobilization has not been investigated using SWATH methods. This study quantitatively characterized the muscle proteome at baseline, and after 3 and 14 d of unilateral lower limb (knee-brace) immobilization in 18 healthy young men (25.4 ±5.5 y, 81.2 ±11.6 kg). All muscle biopsies were obtained from the vastus lateralis muscle. Unilateral lower limb immobilization was preceded by four-weeks of exercise training to standardise acute training history, and 7 days of dietary provision to standardise energy/macronutrient intake. Dietary intake was also standardised/provided throughout the 14 d immobilization period.
Project description:Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are exercise resistant, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise resistant phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFM-NM-2 signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. Cardiac and skeletal muscle from 3 high and 3 low responder rats were examined for differential miRNA expression using Exiqon microarrays
Project description:Background: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle 9 healthy middle-aged men performed 1 hour of one-legged exercise, before and afterwards muscle biopsies were taken from both legs. Skeletal muscle biopsies were analyzed by microarray.
Project description:Exercise stimulates systemic and tissue-specific adaptations that protect against lifestyle related diseases including obesity and type 2 diabetes. Exercise places high mechanical and energetic demands on contracting skeletal muscle, which require finely-tuned protein post-translational modifications involving signal transduction (e.g. phosphorylation) to elicit appropriate short- and long-term adaptive responses. To uncover the breadth of protein phosphorylation events underlying the adaptive responses to endurance exercise and skeletal muscle contraction, we performed global, unbiased mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two rodent models, in situ muscle contraction in rats and treadmill-based endurance exercise in mice.
Project description:We aim to identify a novel pathway to regulate insulin resistance from transcriptional profiles of skeletal muscles from patients with diabetes and to demonstrate its role in experimental models of insulin resistance. We performed transcriptional profiling of skeletal muscles from subjects with or without diabetes. Through an integrative analysis of our dataset with four previous datasets, we identified the core gene sets associated with insulin resistance.
Project description:Purpose: The aim of this study is to investigate the translational regulation of skeletal muscle during acute endurance exercise. Methods: We used mRNA-Seq and ribosome profiling to examine transcriptional and translational regulation, respectively. Result: There were clear distinctions between the profiles of transcription and translation even at a basal condition. TOP-motif genes were translationally suppressed immediately after the exercise. Other genes, such as Slc25a25 was significantly translationally up-regulated presumably in a mTOR-independent manner. Conclusion: There were diverse regulation between transcription and translation. Although many focused on overall protein synthesis to understand the effect of exercise, translational regulation of individual genes are required. Transcriptional and translational profiles of mouse gastrocnemius with or without acute endurance exercise were generated using Ion PGM sequencer.
Project description:We determined the expression profiles in skeletal muscle from people with type 2 diabetes, first degree relatives, and healthy control individuals by microarray experiments. All subjects were Caucasian males and biopsies were taken after a controlled metabolic period of a two hour hyperinsulinemic euglycemic clamp. Our results show for the first time that insulin signaling is significantly downregulated in people with type 2 diabetes, whereas it is significantly upregulated in first degree relatives. Furthermore, we identify several new genes in skeletal muscle from first degree relatives that have an altered gene expression compared to healthy controls.