Overexpression of clock output factor DBP in skeletal muscle of a rat.
Ontology highlight
ABSTRACT: Circadian transcriptional factor was overexpressed in the right muscle of a rat. Differential gene expression was analysed between the test and control muscle at two different timepoints (zT0 and zT12).
Project description:We have demonstrated that PIWIL1 can regulate neuronal radial migration during corticogenesis. In order to explore the mechanism, we carried out high-throughtput sequencing (mRNA profile) to define downstream target of PIWIL during the process of neuronal migration. And we found the expression level of several microtubule-associated proteins decreased after downregulation of PIWIL1. Therefore, PIWIL1 plays an important role in neuronal migration by regulating the expression microtubule-associated proteins (such as Map1B, Map2, Tau) . Examine mRNA profile in two groups of primary cultured neurons with electroporation of control or RNAi plasmid.
Project description:Background: The in vivo gene response associated with hyperthermia and subsequent return to homeostasis or development of heat illness is poorly understood. Early activation of gene networks in the heat stress response is likely to lead to the systemic inflammation, multi-organ functional impairment, and other pathophysiological states characteristic of heat illness. Here, we perform an unbiased global characterization of the multi-organ gene response using an in vivo model of heat stress in the conscious rat. Results: Rats were subjected to elevated temperatures until implanted thermal probes indicated a maximal core temperature of 41.8 M-BM-0C (Tc,Max). Liver, lung, kidney, and heart were harvested at Tc,Max, 24 hours, and 48 hours after heat stress in groups of experimental animals and time-matched controls kept at ambient temperature. Clinical chemistries suggested abnormal function in liver, kidney, and lung at Tc,Max, and cardiac histopathology at 48 hours supported persistent cardiac damage in 3 out of 6 animals. Microarray analysis identified 78 differentially expressed genes common to all 4 organs at Tc,Max (i.e., the consensus heat stress response). Gene set enrichment analysis of gene ontology terms identified 25 biological processes in 4 general gene ontology categories: protein folding, regulation of apoptosis, response to cytokines, and transcriptional responses. Functional analysis clustering of the 78 differentially expressed genes in the consensus heat stress response also identified functional categories of protein folding and regulation of apoptosis. Self-organizing maps identified gene-specific signatures corresponding to protein folding disorders specific to only heat-stressed rats with histopathologic evidence of cardiac injury at 48 hours. Enrichment analysis of differentially expressed proteins in heat-injured hearts at 48 hours corroborated gene enrichment analysis results. Quantitative proteomics analysis by iTRAQ demonstrated that differential protein expression was not comparable to transcript expression at Tc,Max and 24 hours. However, the profile of differentially expressed proteins closely matched the transcriptomic profile in heat-injured animals at 48 hours. Pathway analysis at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism, chronic proteotoxic response, and activation of the unfolded protein response. Calculation of protein super-saturation scores demonstrated an increased propensity of proteins to aggregate in the hearts of heat-injured animals at 48 hours, consistent with accumulation of misfolded proteins. Conclusions: Global transcriptomic and proteomic analysis identified networks of genes and proteins initiating an unfolded protein response, metabolic dysfunction, and mitochondrial energy crisis in animals with histopathologic evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery. To induce the pathophysiological effects of heat stress, conscious rats were placed in an incubator at 37M-BM-:C and their core temperature was monitored. Animals were sacrificed when their core temperature reached 41.8M-BM-:C (Tc,Max), or they were returned to their normal housing environment and were allowed to recover for up to 24 or 48 hours prior to sacrifice. Time-matched controls were euthanized at times corresponding to Tc,Max, 24 hours, and 48 hours. For each condition n=6 for a total of 36 animals. Four tissues (liver, lung, kidney and heart) were analyzed from each animal for a total of 144 arrays; however a few arrays did not pass QC therefore only 140 are reported here: 34 liver, 35 lung, 36 kidney, or 35 heart.
Project description:Immune checkpoint inhibitor (ICI) therapies revitalize anti-cancer responses by intercepting protein-protein interactions between exhausted CD8 T (Tex) cells and cancer cells (e.g. PD-1:PD-L1). However, up to 50% of patients receiving ICIs relapse, warranting further interrogation of the underpinnings of Tex. We conducted RNA-seq meta-analysis of Tex versus effector (Teff) mouse CD8 T cells, and highlighted NRF2 transcriptional targets as the most upregulated gene set in Tex cells. LCMV or cancer inoculation of mice bearing NRF2 hyperactive—or Keap1-/- (NRF2 negative regulator)—T cells demonstrated that NRF2 drives Tex; evidenced by increased co-inhibitory marker (PD-1/TIM-3) expression and reduced cytokine (IFN-g/Granzyme-B) production. RNA-seq of Keap1-/- highlight Ptgir—which encodes the prostacyclin lipid receptor— as the most upregulated gene versus WT T cells. Accordingly, PTGIR knockout in NRF2-hyperactive/ Tex cells decreased PD-1/TIM-3 expression, increased cytokine production, and attenuated tumor growth. Our data underscore PTGIR as a NRF2-regulated Tex driver and illuminate an unconventional immune checkpoint class potentially based on protein-lipid interactions
Project description:Aims/hypothesis: While lipid deposition in skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid droplet coat protein perilipin 2 augments intramyocellular lipid content while improving insulin sensitivity. Another member of the perilipin family, perilipin 5 (PLIN5), is predominantly expressed in oxidative tissues like skeletal muscle. Here we investigated the effects of PLIN5 overexpression M-bM-^@M-^S in comparison with effects of PLIN2 M-bM-^@M-^S on skeletal muscle lipid levels, gene expression profiles and insulin sensitivity. Methods: Gene electroporation was used to overexpress PLIN5 in tibialis anterior muscle of rats fed a high fat diet. Eight days after electroporation, insulin-mediated glucose uptake in skeletal muscle was measured by means of a hyperinsulinemic euglycemic clamp. Electron microscopy, fluorescence microscopy and lipid extractions were performed to investigate IMCL accumulation. Gene expression profiles were obtained using microarrays. Results: TAG storage and lipid droplet size increased upon PLIN5 overexpression. Despite the higher IMCL content, insulin sensitivity was not impaired and DAG and acylcarnitine levels were unaffected. In contrast to the effects of PLIN2 overexpression, microarray data analysis revealed a gene expression profile favoring FA oxidation and improved mitochondrial function. Conclusions/interpretation: Both PLIN2 and PLIN5 increase neutral IMCL content without impeding insulin-mediated glucose uptake. As opposed to the effects of PLIN2 overexpression, overexpression of PLIN5 in skeletal muscle promoted expression of a cluster of genes under control of PPARM-NM-1 and PGC1M-NM-1 involved in FA catabolism and mitochondrial oxidation. Rats received a high fat diet for 3 weeks; 2 weeks after start of the diet intervention Plin5 (OXPAT) or Plin2 (ADRP) were overexpressed in either the right or left tibialis anterior muscle. One week later pooled tibialis anterior muscle samples were analysed on microarrays.
Project description:Methylation is a repressive modification of DNA prevalent throughout mammalian genomes yet mostly absent at CG rich stretches referred to as CGI. Here we identify their building principles by parallel genomic targeting of sequence libraries. Iterative insertions generated over 3,000 variants of genome-derived and artificial sequences at the same genomic site. Single molecule profiling of the methylation status of this collection allowed modeling the contribution of CG content and DNA binding factors towards the unmethylated state. It made the surprising prediction that the majority of CGs within endogenous islands are susceptible to methylation changes modulated by the presence of transcription factors, which is indeed confirmed by genome-wide methylation dynamics during multiple cellular differentiations. Our model further predicts blocks of constitutively unmethylated CGs independent from TF binding, which have a median size of ~300bp but are only present in half of all islands. Their constitutively unmethylated state is a hallmark of untransformed cells but their increased methylation is a specific and predictive feature of cancer. This study quantifies the two principal mechanisms governing methylation patterns in mammalian genomes. It provides a framework to interpret methylation data across normal and cancer samples and refines the concept of CpG islands. Methylation is a repressive modification of DNA prevalent throughout mammalian genomes yet mostly absent at CG rich stretches referred to as CGI. Here we identify their building principles by parallel genomic targeting of sequence libraries. Iterative insertions generated over 3,000 variants of genome-derived and artificial sequences at the same genomic site. Single molecule profiling of the methylation status of this collection allowed modeling the contribution of CG content and DNA binding factors towards the unmethylated state. It made the surprising prediction that the majority of CGs within endogenous islands are susceptible to methylation changes modulated by the presence of transcription factors, which is indeed confirmed by genome-wide methylation dynamics during multiple cellular differentiations. Our model further predicts blocks of constitutively unmethylated CGs independent from TF binding, which have a median size of ~300bp but are only present in half of all islands. Their constitutively unmethylated state is a hallmark of untransformed cells but their increased methylation is a specific and predictive feature of cancer. This study quantifies the two principal mechanisms governing methylation patterns in mammalian genomes. It provides a framework to interpret methylation data across normal and cancer samples and refines the concept of CpG islands. Libraries of DNA sequences were constructed either by mouse genome (129S6) or E.coli genome (NC_010473.1) subrepresentation or custom synthesis. DNA fragments were inserted into the genome of mouse embryonic stem cells by recombination mediated casette exchange (RMCE) at the B-globin locus. Methylation status of the inserted DNA sequences was profiled by bisulfite sequencing using a pair of universal primers flanking the fragments.
Project description:Heat illness, which remains an occupational and environmental hazard, can be caused by excessive strain or heat load in combination with other factors. In the 10-year period from 1999 to 2009, an average of 658 annual heat-related deaths occurred in the United States. While heat stress at the cellular level has been studied, a paucity of risk assessment and injury biomarkers as well as therapeutic interventions remains. To identify novel biomarkers and to further understand the molecular mechanisms of heat stress, we identified differentially expressed microRNAs (miRNAs) in the heart, liver, and kidney from a conscious rat model at three time points. We distinguished the effect in animals with histopathological evidence of heart injury from those without evidence of organ injury. In animals without evidence of injury, we identified a total of 45 unique modulated miRNAs, whereas in the three animals with evidence of injury, we identified 171 unique differentially expressed miRNAs. The majority of the perturbed miRNAs were both time and tissue specific. Using the data from a microarray companion study, we identified the mRNAs that are the predicted targets of the differentially expressed miRNAs and performed pathway enrichment analysis. The enrichment analysis suggested that the perturbed miRNAs are involved in biological pathways related to energy metabolism, the unfolded protein response, and organ injury. These miRNAs may serve as organ-specific heat stress biomarkers of exposure or effect, as well as identify potential targets of heat illness prevention. Heart, liver, lung and kidney tissue was collected from rats at Tc,max and at 24 and 48 h for both heat exposed rats (n=4 to 6) or time matched, unheated controls (n= 4 to 6)
Project description:The histological grade of carcinomas describes the ability of tumor cells to organize differentiated epithelial structures and has prognostic impact. Molecular control of differentiation in normal and cancer cells relies on lineage-determining transcription factors (TFs) that activate the repertoire of cis-regulatory elements controlling cell type-specific transcriptional outputs. TF recruitment to cognate genomic DNA binding sites results in the deposition of histone marks characteristic of enhancers and other cis-regulatory elements. Here we integrated transcriptomics and genome-wide analysis of chromatin marks in human pancreatic ductal adenocarcinoma (PDAC) cells of different grade to identify first, and then experimentally validate the sequence-specific TFs controlling grade-specific gene expression. We identified a core set of TFs with a pervasive binding to the enhancer repertoire characteristic of differentiated PDACs and controlling different modules of the epithelial gene expression program. Defining the regulatory networks that control the maintenance of epithelial differentiation of PDAC cells will help determine the molecular basis of PDAC heterogeneity and progression. Poly(A) fraction of the total RNA from human pancreatic ductal adenocarcinoma cell lines was extracted and subjected to by multiparallel sequencing. Experiments were carried out in unmodified cells in duplicate, genome edited clonal CFPAC1 cells (2 KLF5-deleted CRISPR-Cas9 clones, 3 ELF3-deleted CRISPR-Cas9 clones and 2 wt clones) and CFPAC1 cells ectopically expressing ZEB1 or empty vector control (in duplicate).
Project description:Abstract; Background: Gene transfer by electroporation (electro gene transfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of electro gene transfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, as well as morphological changes evaluated by histological analysis. Electro gene transfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 @s) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. Results: Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic en-zymes such as phosphoenolpuryvate carboxykinase. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while electroporation alone caused minor loss of striation pattern but preservation of cell integrity. Conclusion: The small and transient changes found in the gene expression profiles are of great importance, as this demonstrates that electro gene transfer is safe with minor effects on the muscle host cells. These findings are essential for introducing the electro gene transfer to muscle for clinical use. Indeed the HV+LV pulse combination used have been optimised to ensure highly efficient and safe electro gene transfer. Experiment Overall Design: The mice did recieve to their tibialis cranialis muscle either No tretment/control (CTRL), Electroporation only (EP), Plasmid injection only (DNA) or Plasmid DNA and in vivo Electro gene transfer (EP+DNA). Experiment Overall Design: Four hrs, 48 hrs and 3 weeks after treatment the mice were euthanized and the expression profile of the treated muscles were analysed. Experiment Overall Design: The following number of mice were included: Experiment Overall Design: CTRL, 3 mice, Experiment Overall Design: EP at 4 hrs, 1 mouse, Experiment Overall Design: EP at 48 hrs, 1 mouse, Experiment Overall Design: EP at 3 weeks, 1 mouse, Experiment Overall Design: DNA at 4 hrs, 1 mouse, Experiment Overall Design: DNA at 48 hrs, 1 mouse, Experiment Overall Design: DNA at 3 weeks, 1 mouse, Experiment Overall Design: EP+DNA at 4 hrs, 2 mice, Experiment Overall Design: EP+DNA at 48 hrs, 1 mouse, Experiment Overall Design: EP+DNA at 3 weeks, 1 mouse. Experiment Overall Design: A total number of mice 13.
Project description:This study explored the role of the growth hormone (GH) / insulin-like growth factor 1 (IGF-1) axis on the life-long caloric restriction (CR)-associated remodeling of white adipose tissue (WAT). Adipocyte size and gene expression profiles, using high-density oligonucleotide microarrays, were analyzed in WAT of six- to seven-month old wild Wistar rats fed ad libitum (AL) or subjected to a 30% caloric restriction (CR), and heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (Tg). While not significant in Tg rats, adipocyte size was significantly reduced in CR rats compared with AL rats. The microarray data based on the principal component analysis demonstrated that the gene expression profile of CR rats markedly differed from the AL rats, while Tg hardly differed, suggesting that CR-associated WAT remodeling was predominantly regulated in a GH/IGF-1-independent manner. The gene cluster with the largest change induced by CR included several genes involved in lipid biosynthesis and inflammation. Moreover, many of the genes transcriptionally regulated by sterol regulatory element binding proteins (SREBPs) were found in the cluster related to lipid biosynthesis. Real-time reverse transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its down-stream targets was particularly up-regulated in CR rats compared with SREBP-2 and its down-stream targets. Our findings suggest that SREBP-1 is a major transcription factor in CR-associated remodeling of WAT, and might be one of the key regulators of the anti-aging and pro-longevity effects of CR. The three groups: GH antisense, caloric restriction, and the control were compared by using PCA.
Project description:Many concurrent arrays were run for different projects. All test conditions were tested in all animal models. Animal models were (i) healthy CD1 mice (abbreviation CN), or (ii) STZ-induced diabetic CD1 littermates (STZ). Treatment conditions were (i) untreated animals (no prefix), (ii) treatment with 30ul saline and electrotransfer ("e" prefix), (iii) treatment with 75ug noncoding parental plasmid pGG2-CMV ("p" prefix), or (iv) treatment with 37.5ug each (75ug net) of pGG2-CMV-hIns and pGG2-CMV-rGck expressing human insulin and rat glucokinase respectively ("t" prefix). All samples were harvested 7 days after treatment.